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Abstract

Deep learning and reinforcement learning have had
dramatic recent breakthroughs. However, the ability
to apply these approaches to control real physically
embodied agents remains primitive compared to tra-
ditional robotics approaches.

To help bridge this gap, we are announcing the AI
Driving Olympics (AI-DO), which will be a live com-
petition at the Neural Information Processing Sys-
tems (NIPS) in Dec. 2018. The overall objective
of the competition is to evaluate the state of the art
of machine learning and artificial intelligence on a
physically embodied platform. We are using the
Duckietown [14] platform since it is a simple and
well-specified environment that can be used for au-
tonomous navigation.

The competition comprises five tasks of increasing
complexity - from simple lane following to manag-
ing an autonomous fleet. For each task we will pro-
vide tools for competitors to use in the form of simu-
lators, logs, low-cost access to robotic hardware and
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live ”Robotariums” where submissions will be evalu-
ated automatically.

Keywords Robotics, safety-critical AI, self-driving
cars, autonomous mobility on demand.

1 Introduction

Machine Learning (ML) methods have shown re-
markable success for tasks in both disembodied
dataset settings and virtual environments, yet still
have to prove themselves in embodied robotic task
settings. The requirements for real physical systems
are much different: (a) the robot must make actions
based on sensor data in realtime, (b) in many cases
all computation must take place onboard the platform
and resources may be limited, and (c) many physical
systems are safety-critical which imposes a necessity
for performance guarantees and a good understand-
ing of uncertainty. All of these requirements present
a stress on current ML methods that are built on Deep
Learning (DL), are resource hungry and don’t pro-
vide performance guarantees “out of the box”.

“Classical” robotics systems are built as a composi-
tion of blocks (perception, estimation, planning, con-
trol, etc. ), and an understanding of the interplay
between these different components is necessary for
robots to be able to achieve complex and useful tasks.
However, with ML methods it is unclear whether
these abstractions are necessary and whether it is

1



Figure 1: Duckietown is a scaled-down autonomous
city where the inhabitants are duckies. The platform
comprises autonomous vehicles (Duckiebots) and a
well-specified environment in which the Duckiebots
operate. This platform is used as the basis for the AI
Driving Olympics competition which will take place
at the NIPS 2018 conference.

more effective to learn chains of these components
in an ”end-to-end” fashion or to separate the compo-
nents out and learn them in isolation.

In order to address these issues, we have developed a
new benchmark for evaluating ML on physically em-
bodied systems, called the ”AI Driving Olympics” or
AI-DO. The first AI-DO event will be a live compe-
tition at the Neural Information Processing Systems
(NIPS) 2018 conference in Montréal, Québec.

A main consideration for casting this research as
a competition is that solutions to embodied robotic
tasks are notoriously difficult to compare [2, 4]. As
argued by Behnke [4], competitions are therefore a
suitable way of advancing robotics by making solu-
tions comparable and results reproducible. Without
a clear benchmark of performance, progress is diffi-
cult to measure. To drive home this message, we re-
call the story of the drunkard who has lost his house
keys and then searches for them under the street light.
When asked why he searches close to the street light
he answers because it is lighter there [9]. Learning
from this experience, we aspire to cast this competi-
tion in a way that encourages solving the problems
that need to be solved rather than the ones we know

how to solve.

Furthermore, as argued in [18] in the context of com-
puter vision, large scale endeavors with relevant real-
world applications have the potential to push the en-
velope of what is possible further in a process of pro-
ductive failure [10]. Productive failure is a concept
pioneered by Kapur which emphasizes the impor-
tance of productive struggle in the context of learn-
ing.

1.1 Novelty and related work

We call this competition the “AI Driving Olympics”
(AI-DO) because there will be a set of different trials
that correspond to progressively more sophisticated
behaviors for cars. These vary in complexity, from
the reactive task of lane following to more complex
and “cognitive” behaviors outlined in section 3.

The competition will be live at the Neural Informa-
tion Processing Systems (NIPS) conference, but par-
ticipants will not need to be physically present—they
will just need to send their source code.

There will be qualifying rounds in simulation, similar
to the recent DARPA Robotics Challenge [8], and we
will make the use of “robotariums,” [16], facilities
that allow remote experimentation in a reproducible
setting more closely described in section 2.

Many competitions exist in the robotics field. One ex-
ample is the long-running annual Robocup [12], orig-
inally thought for robot soccer (wheeled, quadruped,
and biped), and later extended to other tasks (search
and rescue, home assistance, etc.). Other impact-
ful competitions are the DARPA Challenges, such
as the DARPA Grand Challenges [13] in 2007-8
that rekindled the field of self-driving cars, and the
recent DARPA Robotics Challenge for humanoid
robots [8].

In ML in general, and at NIPS in particular, there ex-
ist no competitions that involve physical robots. Yet,
the interactive, embodied setting is thought to be an
essential scenario to study intelligence [15]. The ap-
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Table 1: Competition and Benchmark Comparison

Competition DARPA [13] KITTI [6] Robocup [12] RL comp. [11] HuroCup [3] AI-DO

Accessibility - ✓ ✓ ✓ ✓ ✓
Diverse metrics ✓ - ✓ - ✓ ✓
Modularity - - - - - ✓
Resource constraints ✓ - ✓ - ✓ ✓
Simulation/Realism ✓ ✓ ✓ - ✓ ✓
ML compatibility - ✓ - ✓ - ✓
Embodiment ✓ - ✓ - ✓ ✓
Teaching - - - - - ✓

Perception Estimation Planning Control …

Lane	
Detection

Object	
Detection …

Rectify	
Image

Color	
Correction …

Figure 2: Modularity - The full robotics problem
is achieved through a hierarchical composition of
blocks. Which are the right components and what
is the right level of hierarchy to apply machine learn-
ing?

plication to robotics is often stated as a motivation
in recent ML literature (e.g., [5, 7] among many oth-
ers). However, the vast majority of these works only
report on results in simulation [11] and on very sim-
ple (usually grid-like) environments.

To highlight what makes robotics and this competi-
tion unique, we list essential characteristics compar-
ing existing competitions to the upcoming AI-DO as
outlined in Tab. 1.

• Accessibility: No upfront costs other than the
option of assembling a Duckiebot are required.
Conceptually, classes teaching robotics and ma-
chine learning in the Duckietown setting will be
made available online as described in section 5.

• Resource constraints: In robotics constraints
on power, computation, memory and actuator
constraints play a vital role.

• Modularity: More often than not, robotic
pipelines can be decomposed into several mod-
ules (see Fig. 2).

• Simulation/Realism: Duckietowns will be
made available both in simulation and reality
posing interesting questions about the relation-
ship to each other.

• ML compatibility: Additionally past data and
ongoing data from cars in Duckietown will be
made available to allow for training of ML algo-
rithms.

• Embodiment: As any real robot, closed-loop
and real-time interactive tasks await the partici-
pants of the competition.

• Diverse metrics: In most real-world settings,
not one single number determines performance
on a task. Similarly AI-DO employs multiple
diverse performance metrics simultaneously.

2 The Platform

We make available a number of different resources
to competitors to help them build, test, and finally
evaluate their algorithms:
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Figure 3: Currently 17 hours of logs are available
from 38 different robots with more being continu-
ously added.

1. The physical Duckietown platform [14, 17]
(Fig. 1): miniature vision-based vehicles and
cities in which the vehicles drive. This is an af-
fordable setup (∼$200/robot), with rigorously
defined hardware and environment specifica-
tions (e.g., the appearance specification, which
enables repeatable experimentation in the on-
line documentation [1]).

2. Data (Fig 3): Access to many hours of logs
from previous use of the platform in diverse
environments (a database that will grow as the
competition unfolds).

3. A cloud simulation and training environ-
ment: for testing in simulation before trying on
the physical fleet of robots.

4. “Robotariums”: remotely accessible, com-
pletely autonomous environments, continuously
running the Duckietown platform. Robotariums
will allow participants to see their code running
in controlled and reproducible conditions, and
obtain performance metrics on the tasks.

2.1 The Development Pipeline

Given the availability and relative affordability of the
platform, we expect most participants to choose to

build their own Duckietown and Duckiebots and de-
velop their algorithms on the physical platform.

Alternatively, we provide a realistic cloud simulation
environment. The cloud simulation also serves as a
selection mechanism to access a robotarium.

The robotariums enable reproducible testing in con-
trolled conditions. Moreover, they will produce the
scores for the tasks by means of a network of street-
level image sensors. The robotarium scores are the
official scores for the leader board and they are used
for the final selection of which code will be run at
the live competition at NIPS. The participants will
not need to be physically at NIPS — they can par-
ticipate remotely by submitting a Docker container,
which will be run for them following standardized
procedures.

2.1.1 The physical Duckietown platform

The physical Duckietown platform comprises au-
tonomous vehicles (Duckiebots) and a customizable
model urban environment (Duckietown) [1].

The Robot Duckiebots are equipped with only one
sensor: a front-viewing camera with 160◦ fish-eye
lens, streaming 640× 480 resolution images reliably
at 30 fps.

Actuation is provided through two DC motors that in-
dependently drive the front wheels (differential drive
configuration), while the rear end of the Duckiebot
is equipped with a passive omnidirectional wheel. A
minimum radius of curvature constraint is imposed,
at software level, to simulate more car-like dynam-
ics.

All the computation is done onboard on a Raspberry
Pi 3 B+ computer, equipped with a quad-core 1.4
GHz, 64 bit CPU and 1 GB of RAM.

We might support other configurations for the pur-
poses of deploying neural networks onto the robots.

Power is provided by a 10 Ah battery, which guaran-
tees several hours of operation.
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Figure 4: The Duckietown environment is rigorously
defined at road and signal level. When the appear-
ance specifications are met, Duckiebots are guaran-
teed to navigate cities of any conforming topology.

The Environment Duckietowns are modular,
structured environments built on two layers: the
road and the signal layers (Fig. 4).

There are six well defined road segments: straight,
left and right 90 deg turns, 3-way intersection, 4-way
intersection, and empty tile. Each is built on indi-
vidual tiles, and their interlocking enables customiza-
tion of city sizes and topographies. The appearance
specifications detail the color and size of the lines as
well as the geometry of the roads.

The signal layer comprises of street signs and traffic
lights.

In the baseline implementation, street signs are April-
Tags (in union with typical road sign symbols) that
enable global localization and interpretation of inter-
section topologies by Duckiebots. The appearance
specifications detail their size, height and positioning
in the city. Traffic lights provide a centralized solu-
tion for intersection coordination, encoding signals
in different LED blinking frequencies[1].

Fleet management 

Navigation 

Lane following 

Abstraction

Figure 5: The tasks are designed to be increas-
ingly complex, and consequently investigate the au-
tonomous mobility on demand problem at increasing
levels of abstraction.

3 Tasks

Many recent works in deep (reinforcement) learning
cite robotics as a potential application domain [5, 7].
However, comparatively few actually demonstrate re-
sults on physical agents. This competition is an op-
portunity to properly benchmark the current state of
the art of these methods as applied to a real robotics
system.

Our experience thus far indicates that many of the
inherent assumptions made in the ML community
may not be valid on real-time physically embodied
systems. Additionally, considerations related to re-
source consumption, latency, and system engineer-
ing are rarely considered in the ML domain but are
crucially important for fielding real robots. We hope
this competition can be used to benchmark the state
of the art as it pertains to real physical systems and,
in the process, spawn a more meaningful discussion
about what is necessary to move the field forward.

The best possible outcome is that a larger propor-
tion of the ML community redirects its efforts to-
wards real physical agents acting in the real world,
and helps to address the unique characteristics of the
problem. The guaranteed impact is that we can estab-
lish a baseline for where the state of the art really is
in this domain.
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We propose a sequence of five challenges, in increas-
ing order of difficulty. We briefly discuss the goal of
each challenge; later, we will discuss the metrics in
detail.

LF Lane following on a closed course, with static
obstacles (cones and parked vehicles). The
robot will be placed on a conforming closed
track (with no intersections) and should follow
the track on the right-hand lane.

LFV Lane following on a continuous closed course,
with static obstacles plus dynamic vehicles
controlled “by the matrix” sharing the road.
Now the agent needs to deal with an environ-
ment populated by other intelligent agents.

NAVV Navigation plus vehicles controlled by the ma-
trix. Requires that the robot implement a coordi-
nation protocol for navigating the intersections.

FM Fleet management: This scenario is meant to
resemble a taxi-service. Customer request to
go from location ”A” to location ”B” arrive se-
quentially and need to be served in an intelligent
manner. Participants are asked to submit a cen-
tral dispatcher that submits navigation tasks to
Duckiebots to best serve customer requests.

AMOD Autonomous mobility on demand: in addition
to dynamic navigation, participants must imple-
ment a central dispatcher that provides goals to
the individual robots. Points are given for the
number of customers served.

3.1 Metrics and Judging

Each challenge will have specific objective metrics to
quantify success. The success metrics will be based
on measurable quantities such as speed, timing and
automated detection of breaches of rules of the road.
No human judges are necessary.

There are going to be three classes of metrics:

1. Traffic laws compliance metrics, to penalize
the illegal behavior (e.g. not respecting the right
of way);

2. Performance metrics, such as the average
speed, to penalize inefficient solutions;

3. Comfort metrics, to penalize unnatural solu-
tions that would not be comfortable to a passen-
ger.

We will keep these metrics separate, and evaluate the
solutions on a partial order, rather than creating a
total order by collapsing the metrics in a single re-
ward function to optimize. We will impose minimum
objectives (minimum speed, maximum violation) to
avoid degenerate solutions (e.g. a robot that does not
move is very safe, but it does not have an accept-
able performance). A more detailed mathematical
description of these metrics is provided in the sup-
plementary material (section 8).

We anticipate that there will be multiple winners in
each competition (e.g. a very conservative solution,
a more adventurous one, etc.).

4 Technical Components

4.1 Localization

We are building infrastructure in our Robotariums
system to automate the localization of the robots.
This is essential for two reasons: 1) To evaluate the
score of the agents, and 2) To robustly automate the
process of resetting the agents at the their initial con-
figurations in preparation for the evaluation of the
next entry.

The approach for automatic localization is based on
an system of cameras mounted on traffic lights and
other elevated city structures, which are designed
to locate the robots and report on their locations
(Fig. 6).

Additional solutions might be used to increase over-
all robustness (e.g., ceiling mounted cameras).

6



Table 2: Overview of tasks in pictures. From left to right: Lane following, lane following with dynamic
vehicles, navigation, fleet management and autonomous mobility on demand.

3

3

3

3

13

16

14

15

3381

3383

3382

3380

152

3

13
2

3142 75

333333374

333333374
152

3

13
2

3142 75

333333374

333333376

152

3

13
2

3142 75

333333374

333333374
161

3

14
1

3151 78

333333377

333333379

152

3

132

3142
75

333333374

333333374159

3

139

3149
92

333333391

333333393

152

3

132

3142
75

333333374

333333374160

3

140

3150
88

333333389

333333390

152

3

132

3142
75

333333374

333333374158

3

138

3148
20

4

3333333205

3333333203

152

3

132

3142
75

333333374

333333374 156

3

136

3146
210

3333333211

3333333209

152

3

132

3142
75

333333374

333333374 157

3

137

3147
207

3333333206

3333333208

152

3

132

3142
75

333333374

333333374 155

3

135

3145
217

3333333214

3333333213

15
2

3

132

314275

333333374

333333374
61

3

57

366224

3333333226

3333333225

15
2

3

132

314275

333333374

333333374
62

3

58

365222

3333333221

3333333223

152

3

13
2

3142 75

74

333333374
154

3

13
4

3144 217

3333333216

3

3

3

3

198

19
9

46

197

3385

3387

3386

3384

3

3

3

3

48

45

47

44

33202

33200

3394

33201

6

5 4

7

3

1 2

8 9

11

1514

10

13

153

133

14
3

21
9

218

220

12

21
5

1618

19

20 21

17

Figure 6: The overhead cameras are used to provide
ground truth localization of the robots inside the Rob-
otarium environments.

4.2 Containerization

In order to lower the barrier of entry for participants
and minimize the amount of code refinements be-
tween platforms (simulators, robotarium, real robot),
we are developing a state-of-the-art containerization
infrastructure, which is also compatible with the
cloud interface.

4.3 Simulation

We are developing a suite of simulators that are
available to the competitors for use in development.
These simulators scale in fidelity with the complexity

Figure 7: Our Docker containerization system acts
as an interface between the hardware/simulator and
the competitors developed code.

of the tasks:

• we have a very lightweight ”machine-learning
friendly” simulator with minimal dependencies
and a low-level API based on OpenGL (shown
in Fig. 8) that is used for lane following tasks;

• for navigation tasks, we provide a higher fidelity
simulator based on Unity;

• for the AMOD task, we provide a fleet-level
simulator.

4.4 Baselines

We are providing baseline “strawman” solutions,
based both on “classical” and learning-based ap-
proaches. These solutions are fully functional (they
will get a score if submitted) and contain all the nec-
essary components, but should be easily beatable.
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Figure 8: Lightweight OpenGL based simulator
used for lane following tasks.

Additionally, the baseline solutions will be modular,
i.e., they will contain a composition of containers,
where competitors can choose to replace single con-
tainers or combinations (there need not be a one to
one mapping between the containers in the baseline
solutions and the competitor entries) as long as the
well-specified APIs are preserved.

5 Pedagogical

It is envisioned that there will be two different groups
of competitors: (a) independent learners not affili-
ated with any institution and (b) participants within
the framework of a university class. A second ver-
sion of the globally synchronized class will culmi-
nate this year with students submitting entries to the
competition. We have provided a full suite of online
learning materials in the ”Duckiebook” [1] to support
both groups. These materials include slides, theory
units, exercises, and demonstration instructions. For
more details about the educational components of the
projects please see [17].

6 Outreach

One of the key design criteria for this project and
competition is the low barrier of entry, both in terms

of effort and cost. This is very important since we
want to encourage participation from all geographi-
cal and demographic categories.

To achieve this objective we have:

• designed the containerization framework to al-
low for rapid development;

• striven to keep the hardware components of the
platform accessible (mostly off-the-shelf items)
and low cost;

• provided access to cloud infrastructure, to en-
sure a level playing field for all participants.

7 Conclusion

We are excited to announce a new competition - the
AI Driving Olympics, which will take place at the
NIPS 2018 conference. The main objective is to
evaluate the performance of state-of-the-art machine
learning systems in the real physically embodied
robot setting. The challenges inherent in deploying
robots in the real world are quite different than most
other applications where machine learning has had
recent breakthroughs. We believe this is an oppor-
tunity to inspire the members of the ML community
to focus more efforts on the physical embodied sce-
nario, and to provide a benchmark for realistic com-
parison of algorithms. The platform is designed have
a very low barrier for entry, both in terms of cost
and in terms of effort, and we therefore hope to at-
tract participants from diverse geographical regions
and underrepresented demographics.
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8 Appendix: Performance met-
rics

Measuring performance in robotics is less clear cut
and more multidimensional than traditionally en-
countered in machine learning settings. Nonetheless,
to achieve reliable performance estimates we assess
submitted code on several episodes with different ini-
tial settings and compute statistics on the outcomes.
We denote J to be an objective or cost function to op-
timize, which we evaluate for every experiment. In
the following formalization, objectives are assumed
to be minimized.

In the following we summarize the objectives used
to quantify how well an embodied task is completed.
We will produce scores in three different categories:
performance objective, traffic law objective and com-
fort objective. Note that the these objectives are not
merged into one single number.

8.1 Performance objective

Lane following (LF / LFV)

As a performance indicator for the ”lane following
task” and the ”lane following task with other dy-
namic vehicles”, we choose the speed v(t) along the
road (not perpendicular to it) over time of the Duck-
iebot. This then in turn measures the moved dis-
tance per episode, where we fix the time length of
an episode. This encourages both faster driving as
well as algorithms with lower latency. An episode
is used to mean running the code from a particular
initial configuration.

JP−LF (V )(t) =

∫ t

0

−v(t)dt

The integral of speed is defined over the traveled dis-
tance of an episode up to time t = Teps, where Teps

is the length of an episode.

Navigation (NAVV)

Similarly, for the ”navigation with dynamic vehicles
task” (NAVV), we choose the time it takes to go from
point A to point B within a Duckietown map as per-
formance indicator. A trip from A to B is active as
soon as it is received as long as it has not been com-
pleted.

This is formalized in the equation and integral below.

JP−NAV V (t) =

∫ t

0

IAB−activedt

The indicator function IAB−active is 1 if a trip is ac-
tive and 0 otherwise. Again the integral of an episode
is defined up to time t = Teps, where Teps is the
length of an episode.

Fleet management (FM)

As performance objective on task FM, we calculate
the sum of trip times to go from Ai to Bi. This
generalizes the objective from task NAVV to multi-
ple trips. The difference to task NAVV is that now
multiple trips (Ai, Bi) may be active at the same
time. A trip is active as soon as it is requested and as
long as it has not been completed. Likewise, multi-
ple Duckiebots are now available to service the addi-
tional requests. To reliably evaluate the metric, mul-
tiple pairs of points A, B will be sampled at different
time points within an episode.

JP−FM (t) =
∑
i

∫ t

0

Ii−activedt

The indicator function Ii−active is 1 if a trip is active
and 0 otherwise. Again the integral of an episode is
defined up to time t = Teps, where Teps is the length
of an episode.

Autonomous mobility on demand (AMoD)

An AMoD system needs to provide the highest pos-
sible service level in terms of journey times and wait
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times, while ensuring maximum fleet efficiency. We
have two scoring metrics representing these goals in
a simplified manner. In order to normalize their con-
tributions, we supply a baseline case B for every sce-
nario. In the baseline case, a simple heuristic prin-
ciple is used to operate the AMoD system and the
performance is recorded.

We introduce the following variables:

dT total distance driven by fleet
dE empty distance driven by fleet

without a customer on board

R ∈ N+ number of requests in scenario
wi ∈ R waiting time of request i
wi,B ∈ R wi in B case

N ∈ N+ number of taxis

NB ∈ N+ N in B case

The first performance metric is for cases when the
same number of vehicles as in the benchmark case
NB is used:

JP−AMOD−1 = 0.5 · dE
dT

+ 0.5 ·
∑K

i=1 wi∑K
i=1 wi,B

The second performance metric allows the designer
to reduce the number of vehicles, if possible, or in-
crease it if deemed useful:

JP−AMOD−2 = JAMOD−1 + 0.5 · N

NB

For the AMoD task, only a performance metric will
be evaluated. Robotic taxis are assumed to already
observe the rules of the road as well as drive comfort-
ably. Through the abstraction of the provided AMoD
simulation, these conditions are already enforced.

8.2 Traffic law objective

The following are a list of rule objectives the Duck-
iebots are supposed to abide by within Duckietown.
All individual rule violations will be summarized in
one overall traffic law objective JT . These penalties
hold for the lane following, navigation and fleet man-
agement tasks (LF, LFV, NAVV, FM).

Figure 9: Picture depicting a situation in which the
staying-in-the-lane rule applies.

Quantification of “Staying in the lane” The
Duckietown traffic laws say:

“The vehicle must stay at all times in the right lane,
and ideally near the center.”

We quantify this as follows: let d(t) be the abso-
lute perpendicular distance of the center of mass the
Duckiebot-body from the middle of the right lane,
such that d(t) = 0 corresponds to the robot being in
the center of the right lane at a given instant. While
d(t) stays within an acceptable range no cost is in-
curred. When the safety margin dsafe is violated, cost
starts accumulating proportionally to the square of
d(t) up to an upper bound dmax. If even this bound
is violated a lump penalty α is incurred.

The “stay-in-lane” cost function is therefore defined
as:
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JT−LF (t) =

∫ Teps

0


0 d(t) < dsafe

βd(t)2 dsafe ≤ d(t) ≤ dmax

α d(t) > dmax

An example situation where a Duckiebot does not
stay in the lane is shown in Fig. 9.

Quantification of “Stopping at red intersection
line” The Duckietown traffic laws say:

“Every time the vehicle arrives at an intersection with
a red stop line, the vehicle should come to a complete
stop in front of it, before continuing.”

Figure 10: Picture depicting a Duckiebot stopping
at a red intersection line.

During each intersection traversal, the vehicle is pe-
nalized by γ if there was not a time t when the ve-
hicle was at rest (v(t) = 0) in the stopping zone de-
fined as the rectangular area of the same width as
the red line between 3 and 10 cm distance from the
start of the stop line perpendicular to the center of
mass point of the Duckiebot. This situation is demon-
strated in Fig. 10. The condition that the position p(t)
of the center of mass of the Duckiebot is in the stop-
ping zone is denoted with p(t)bot ∈ S . Then we write
the objective as the cumulative sum of stopping at in-
tersection rule infractions.

JT−SI(t) =
∑
tk

γI∄t s.t. v(t)=0∧p(t)bot∈Szone

Here the sum over time increments tk denote the
time intervals in which this conditions is checked.
The rule penalty is only applied once the Duckiebot
leaves the stopping zone. Only then is it clear that it
did not stop within the stopping zone.

To measure this cost, the velocities v(t) are evaluated
while the robot is in the stopping zone S.

Quantification of “Keep safety distance” The
Duckietown traffic laws say:

“Each Duckiebot should stay at an adequate distance
from the Duckiebot in front of it, on the same lane,
at all times.”

We quantify this rule as follows: Let b(t) denote the
distance between the center of mass of the Duckiebot
and the center of mass of the closest Duckiebot in
front of it which is also in the same lane. Further-
more let bsafe denote a cut-off distance after which
a Duckiebot is deemed ”far away”. Let δ denote a
scalar positive weighting factor. Then

JT−SD(t) =

∫ t

0

δ ·max(0, b(t)− bsafe)
2.

Quantification of “Avoiding collisions” The
Duckietown traffic laws say:

At any time a Duckiebot shall not collide with an-
other object or Duckiebot.

Figure 11: Picture depicting a collision situation.
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The vehicle is penalized by ν if within a time a time
interval of length tk t ∈ [t, t + tk), the distance ℓ(t)
between the vehicle and a nearby object or other ve-
hicle is zero or near zero. ℓ(t) denotes the perpen-
dicular distance between any object and the Duck-
iebot rectangular surface. The collision cost objec-
tive therefore is

JT−AC(t) =
∑
tk

νI∃t∈[t−tk,t)ℓ(t)<ϵ

Time intervals are chosen to allow for maneuvering
after collisions without incurring further costs.

An illustration of a collision is displayed in Fig. 11.

Quantification of “Yielding the right of way”
The Duckietown traffic laws say:

Every time a Duckiebot arrives at an intersection
with a road joining on the right, it needs to check
whether there are other Duckiebots on the right-hand
lane of the joining road. If so, these vehicles shall
traverse the intersection first.

Mathematically we accumulate penalties µ whenever
the Duckiebot moves at an intersection while there
is a Duckiebot (DB) on the right hand joining lane
(RHL).

JT−Y R(t) =
∑
tk

µIv(t)>0∧∃ DB in RHL

The yield situation at an intersection is depicted in
Fig. 12.

Hierarchy of rules To account for the relative im-
portance of rules, the factors α, β, γ, δ, ν, µ of the
introduced rules will be weighted relatively to each
other.

Letting > here denote “more important than”, we de-
fine the following rule hierarchy:

JT−AC > JT−SI > JT−Y R > JT−SD > JT−LF

I.e.:

Figure 12: Picture depicting a situation in which the
yield rule applies.

Collision avoidance > Stop line > Yielding >
Safety distance > Staying in the lane.

This constrains the factors α, β, γ, δ, ν, µ whose ex-
act values will be determined empirically to enforce
this relative importance.

While the infractions of individual rules will be re-
ported, as a performance indicator all rule violations
are merged into one overall traffic law objective JT .
Let T denote a particular task, then the rule violation
objective is the sum of all individual rule violations
Ji which are an element of that particular task.

JT =
∑
i

IJi∈TJT−i,

where IJi∈T is the indicator function that is 1 if a
rule belongs to the task and 0 otherwise.

8.3 Comfort metric

Lane following and navigation (LF, LFV, NAVV)

In the single robot setting, we encourage “comfort-
able” driving solutions. We therefore penalize large
accelerations to achieve smoother driving. This
is quantified through smoothed changes in Duck-
iebot position pbot(t). Smoothing is performed by
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convolving the Duckiebot position pbot(t) with a
smoothing filter ksmooth.

As a comfort metric, we measure the smoothed abso-
lute changes in position ∆pbot(t) over time.

JC−LF/LFV/NAV V (t) =

∫ t

0

ksmooth ∗∆pbot(t)dt

Fleet management (FM)

In the fleet management setting ”customer experi-
ence” is influenced greatly by how fast and depend-
able a service is. If it is known that a taxi arrives
quickly after ordering it, it makes the overall taxi ser-
vice more convenient.

We therefore define the comfort metric as the maxi-
mal waiting time Twait until customer pickup. Let
Twait denote the time beginning at the reception of a
ride request until when the ride is started.

Let Swait(t) = {Twait1 , . . . } denote the set of wait-
ing times of all started ride requests Ai → Bi up to
time t. Then the comfort metric of the fleet manage-
ment task is the maximal waiting time stored in the
set Swait.

JC−FM (t) = max
Twait

Swait

This concludes the exposition of the rules of the AI
Driving Olympics. Rules and their evaluation are
subject to changes to ensure practicability and fair-
ness of scoring.

14


	Introduction
	Novelty and related work

	The Platform
	The Development Pipeline
	The physical Duckietown platform


	Tasks
	Metrics and Judging

	Technical Components
	Localization
	Containerization
	Simulation
	Baselines

	Pedagogical
	Outreach
	Conclusion
	Appendix: Performance metrics
	Performance objective
	Traffic law objective
	Comfort metric


