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Abstract— Duckietown is an open, inexpensive and flexible
platform for autonomy education and research. The platform
comprises small autonomous vehicles (“Duckiebots”) built from
off-the-shelf components, and cities (“Duckietowns”) complete
with roads, signage, traffic lights, obstacles, and citizens (duck-
ies) in need of transportation. The Duckietown platform offers
a wide range of functionalities at a low cost. Duckiebots sense
the world with only one monocular camera and perform all
processing onboard with a Raspberry Pi 2, yet are able to:
follow lanes while avoiding obstacles, pedestrians (duckies) and
other Duckiebots, localize within a global map, navigate a
city, and coordinate with other Duckiebots to avoid collisions.
Duckietown is a useful tool since educators and researchers
can save money and time by not having to develop all of
the necessary supporting infrastructure and capabilities. All
materials are available as open source, and the hope is that
others in the community will adopt the platform for education
and research.

I. INTRODUCTION

Self-driving vehicles are poised to become one of the most
pervasive and impactful applications of autonomy. However,
difficult challenges still remain before their widespread deploy-
ment, many of which concern the system as a whole, rather
than single components in isolation. Examples include the co-
design of hardware components and algorithms, the coupled
interactions between perception and control, the optimal
allocation of finite computational resources to concurrent
processes, and safe multi-agent behaviors.

A modern curriculum in autonomy should train students in
the individual components and the system-level interactions
alike. This poses several challenges. First, building a full-
scale vehicle, let alone a fleet of vehicles, is very costly and
also imposes significant logistical and safety-related problems.
Second, the time required to develop all of the components
and infrastructure is significant, and much of it is spent on
tasks not directly related to the desired subject matter.

To address these issues, we propose Duckietown (Fig. 1),
an open-source platform for autonomy education and research.
It includes autonomous vehicles called “Duckiebots.” The
minimal configuration uses only a Raspberry Pi 2 for all
computation and a single monocular camera for sensing, yet
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Fig. 1. In Duckietown, inhabitants (duckies) are transported via an
autonomous mobility service (Duckiebots). Duckietown is designed to be
inexpensive and modular, yet still enable many of the research and educational
opportunities of a full-scale self-driving car platform.

Duckiebots are capable of fairly complex single-robot and
multi-robot behaviors. Duckiebots live in “Duckietowns,” col-
orful miniature environments that are assembled from modular
tiles. Duckietowns and Duckiebots are easily reproducible
and inexpensive, costing approximately $150 per vehicle and
$2/m2 for the environment.

Duckietowns are carefully designed to allow a sliding scale
of difficulty in perception, inference and control tasks that
makes the platform usable in a wide range of applications,
from undergraduate-level education to research-level problems.
For example, one solitary Duckiebot can successfully traverse
the environment using only line detection and reactive
control, while successful point-to-point navigation requires
recognizing street signs. In turn, sign detections can be
“simulated” either by using fiducials (AprilTags [1]) affixed
to each sign, or it can be implemented using “real” object
detection. Realizing more complex behaviors, such as vision-
based decentralized multi-robot coordination, poses research-
level challenges, especially considering resource constraints.

A major advantage of the Duckietown platform is derived
from the complex software architecture provided, which
contains components such as sensor calibration, configuration,
low-level perception, object recognition, nonlinear relative
estimation, global localization, high-level planning and de-
centralized coordination. Our goal was to provide a complete
“textbook” architecture that is comparable in complexity
with full-scale implementations (e.g. [2]), while still being
understandable by beginners.

The main intended use of Duckietown is as support for
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TABLE I
MINIMAL AUTONOMY CONFIGURATION COMPONENTS

Subsystem Item OTS cost
Computation Raspberry Pi 2 B + 8GB SD card $40
Actuation Chassis + 2DC motors $15
Motor Controller Adafruit DC motor hat $20
Sensing Camera with fish-eye lens $25
Power 38.4Wh Battery $15
Communication Wireless dongle $10
Misc. Cables, Screws & Nuts $10

Prices rounded to the closest $5. Exact items and links to vendors are
available at the website http://duckietown.mit.edu.

an undergraduate or graduate-level class in autonomy. Duck-
ietown is especially suited for team-based learning, where
groups of students work on improving different subsystems
that need to work together. This is how it was used at MIT
in Spring 2016 [3]. Alternatively, Duckietown is suitable
for classes focused on one specific field or subsystem (e.g.,
computer vision or nonlinear control). In that case, the benefit
is that the effect of that particular subsystem on the full
integrated system is immediately observable. This is how
it has been used at National Chaio Tung University [4].
Duckietown becomes a research platform by relaxing the
known prior assumptions about the environment (such as
known dimensions, colors, positioning of signage, fiducials
on signs, allowable network topologies, etc.). The authors
are using Duckietown for research topics such as resource-
constrained perception [5], co-design [6], and formal methods
for safe vehicle coordination [7].

Outline: Section II describes the Duckiebot platform, built
from off-the-shelf components. The remainder of the paper
describes the architecture developed. For each functionality,
we will describe the baseline implementation, the topics
that can be taught using that functionality, and the possible
extensions by using fewer prior assumptions. We describe
the architecture in order of behavioral complexity. Section III
describes the pipeline for single-robot reactive lane following.
Section IV describes the subsystems involved in single-robot
localization, planning, and navigation. Section V describes
the subsystems involved in multi-robot communication and
coordination behaviors. Finally, we discuss the systems-level
approach to resource management in Section VI and provide
concluding remarks in Section VII.

II. THE DUCKIEBOT

Duckiebots are autonomous vehicles designed with the
objectives of affordability, modularity and ease of construction.
We present three configurations:

• The minimal autonomy configuration is sufficient to
support all single-robot behaviors implemented.

• The extended configuration adds some “luxury” features
that are convenient for development, such as a joystick
and an on-board wireless access point.

• The fleet configuration includes light emitting diodes
(LEDs) as a means of inter-Duckiebot communication
and enables the multi-robot coordination behaviors.

1) Minimal Autonomy Configuration: The components of
a Duckiebot in the minimal configuration are summarized

TABLE II
A SAMPLE OF LOW COST PLATFORMS FOR EDUCATION AND RESEARCH

Product Cost M
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AERobot [8] $20 7 3 3 7 3 7 7 7
Kilobot [9] $50 7 3 7 3 7 3 3 7
3pi [10] $100 F 7 3 7 3 7 F 7
Jasmine [11] $120 3 3 3 3 3 7 3 7
LabRat [12] $120 3 3 7 7 3 7 3 F
Thymio II [13] $130 7 3 3 7 3 7 7 7
Duckiebot $150 3 3 3 3 3 3 F 3
Scribbler-3 [14] $180 3 3 3 3 3 7 7 F
Boe-bot [15] $180 3 3 F F 3 F 7 7
ActivityBot [16] $200 3 7 F F 3 F 7 7
Create-2 [17] $200 F 7 F F 3 7 7 F
Bot‘n Roll [18] $200 3 3 3 7 3 7 F 7
R-one [19] $250 7 3 3 7 3 3 3 7
Hemission [20] $250 F 7 3 7 3 7 7 F
Pheeno [21] $270 3 3 3 3 3 3 7 3

This list includes ≤$300 platforms with recent publications in the last 10
years (or available on the market). The prices listed are for the base model.
Stars indicate available features for additional cost.

in Table I. These are all off-the-shelf components that are
easily replaceable. Each robot requires about 15 minutes of
soldering work and 0.5-1.5 hours of assembly, depending on
skill.

a) Computation: All computation is performed on a
Raspberry Pi 2 (RasPi), which provides four 900MHz ARM
cores and 1 GB RAM.

b) Actuation: The chassis of the Duckiebot can be any
of the many available kits that can be found online that use
two DC motors in a differential drive configuration. Since we
do not use odometers, the chassis is the most fungible part
of the design. The motors are controlled through an Adafruit
DC Motor Hat that attaches as a “shield” on the RasPi.

c) Sensing: The only sensor used is a monocular camera
with a fish-eye lens. The camera is connected to the RasPi
through a dedicated parallel connection.

d) Communication: Access (for setup, debug and op-
tional manual control through keyboard) is provided through
a WiFi dongle or Ethernet port on the RasPi.

2) Extended Configuration: For teaching and research
setups with large team deployments, the best solution to
network saturation is to use an access point onboard each
Duckiebot. These mobile hotspots create a dedicated 5GHz
network for each robot and connect directly to the RasPi
through Ethernet. Additionally, a wireless joystick with USB
dongle enables more convenient manual control. Finally, a
32GB USB drive can be employed to store larger amounts
of data logs. This configuration adds an additional ≈ $75.

3) Fleet Configuration: This version of the Duckiebot is
equipped with five variable color LEDs, and an Adafruit pulse-
width modulation (PWM) hat to drive them. The LEDs are
employed for communicating with other vehicles by signaling
the Duckiebot’s status and intent. The introduction of these
LEDs increases the platform cost by ≈ $30 over the base
model.

We compare the base model Duckiebot with some other
popular robots used for education and outreach in Table II.

1498



Of particularly note is how few low-priced available robots
use vision as the primary sensor. The choice of a camera,
as opposed to a proximity or infrared (IR) sensor makes our
system a much more realistic representation of a full-sized
platform.

III. LANE FOLLOWING

The most basic behavior of the Duckiebot is lane following.
This behavior is implemented using a realistic computer vision
pipeline (Fig. 2) that contains these steps:

• Illumination variability compensation.
• Detection of road markings.
• Re-projection from image space to world frame, based

on extrinsic and intrinsic calibration.
• Lane localization with a nonparametric Bayes filter.
• Lane controller.

camera image
illumination

compensation
line

detection

illumination-!
corrected!

 image

ground 
projection

lane !
localization

line-markings !
in body frame

intrinsic and !
extrinsic !

calibration

lane !
controller

wheels
commands

kinematic
calibration

detected line markings

appearance !
prior

belief

Fig. 2. The lane following pipeline runs on-board at 10Hz with a
resolution of 320x240 and a latency of 110ms. The purple text indicates
prior information.

A. Infrastructure - The Duckietown Road Layer

The design of Duckietowns are an easily-understandable
example of a formal specification: if the environment satisfies
the specification, then the Duckiebot is guaranteed to be able
to navigate it.

Duckietowns have two layers: one for the road and one
for the signals. Lane following only depends on the road
layer. The road layer is constructed by arranging the five
types of interlocking tiles (Fig. 3). The precise color and
positioning of the road markings are part of the specification
and constitute a strong prior that can be used by perception.

B. Illumination Compensation

Illumination variability is one of the challenges of computer
vision. We use this procedure to teach:

• How machine learning can be used “in the loop” for
autonomous robots.

• The importance of using prior information; in this case,
the prior on the colors is given by the Duckietowns road
layer specification.

In the baseline implementation of this functionality, we
use the k-means clustering algorithm over a subsample of
the sensor pixels in order to detect the main clusters on the
road, and we match them to the expected clusters of red,
yellow, white, and gray, according to the prior. We then fit an
affine transformation in RGB colorspace between the detected
clusters and their color-balanced version. Regularization

(a) straight (b) 3-way

(c) 4-way (d) empty (e) turn

Fig. 3. Duckietowns are modular assemblies of five different tile types:
(a) straight road, (b) a three-way intersection, (c) a four-way intersection,
(d) non-road, and (e) turn. These tiles can be arranged to obtain arbitrary
topologies. The tapes on the right hand side of a lane are white and solid,
the tapes on the left hand side of a lane are yellow and dashed, and the stop
lines are red and solid.

(a) before (b) after
Fig. 4. Camera image before and after illumination compensation. Pixel
distribution (blue dots), representative main colors (large colored blobs) and
the transformation performed (white arrows) in RGB color space.

expresses our prior belief on illumination conditions and
road marker colors. The transformations allowed are channel-
separate:

I
(i)
obs = aiI

(i)
orig + bi + n, i ∈ {R,G,B}, (1)

where n is Gaussian measurement noise, and, for regulariza-
tion, we assume a Gaussian prior for the parameters ai, bi.
The resulting 6× 6 linear system of equations is(

Adata
Areg

)
pI =

(
bdata
breg

)
, (2)

where Adata, bdata result from the observation model of (1),
and Areg, breg result from the regularization. The vector pI is
the vector of illumination parameters. The squared residual
error in (2) gives an estimation of fit quality and allows the
system to detect failure.

C. Road Markings Detection

Duckiebots perform localization in a lane by extracting
oriented line segments along the border of lane markings, and
then running a nonparametric Bayesian filter (more details
in Sec III-E). Due to the robustness of our lane filtering
approach, we prioritize high recall at the expense of some
false positive.

An overview of the oriented line segments detection
pipeline is shown in Fig. 5. The image is first downsampled,
then two filters act in parallel: a Canny filter to detect edges,
and Hue-Saturation-Value colorspace thresholding to detect
the given color. The results are fed through an “AND” gate.
Individual line segments are extracted using a probabilistic
Hough transform [22].
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Fig. 5. Pipeline of the line segment detection algorithm.
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Fig. 6. Extrinsic camera calibration. The right image is the setup for the
extrinsic camera calibration. The left image is an undistorted image captured
via the camera on the Duckiebot. Once a homography H is estimated, it is
possible to map from a point in image xi to a corresponding point on the
ground xg . The coordinate frame on the right image represents the camera
coordinate frame of the Duckiebot.

D. Image Plane → Road Plane Homography

The next step consists in transforming the oriented line
segments detections in image space to oriented points in 3D in
body coordinates. Using the prior of a planar environment, it is
possible to create a 1-to-1 map from image space to 3D space.
First, the points are undistorted using the camera’s intrinsic
calibration. Then the map is represented by a homography,
xi ' Hxg , where xi and xg are the points in the image and
ground planes respectively, H ∈ R3×3 is the homography
matrix, and ' represents equivalence up to scale.

Duckietown includes a calibration tool that allows one to
estimate the camera’s intrinsics and extrinsics (Fig. 6).

E. Lane-Relative Estimation

To execute the lane following behavior, we must obtain an
estimate of the Duckiebot’s lateral position and orientation
relative to the lane (d and φ as indicated in Fig. 7). However,
we do not need to know the longitudinal coordinate. This is
an example of a “minimal sufficient statistics” for performing
a control task.

A standard parametric approach to the estimation problem
(such as a Kalman filter which employs a Gaussian assump-
tion) would likely fail due to the presence of such a potentially
high percentage of outliers and the nonlinearity of the process
model. As a result, in the baseline implementation we employ
a nonlinear non-parametric histogram filter [23].

The state of the car in the lane at time t is represented
by the reduced-dimension state: xt , 〈dt, φt〉, where dt ∈
[dmin, dmax] is the lateral displacement in the lane (with
the d = 0 line being defined as the center of the lane) and φt ∈
[φmin, φmax] is the angle relative to the center axis as shown
in Fig. 7. From the specification, we know the width of the
lane, w, and the widths of the right (white) and left (yellow),
lW and lY respectively, and we can use this information
together to generate a unique hypothesis of the state from
each segment detected by the road marking detector.

lY
w lW

d

φ

d = 0 dmaxdmin

φ = 0

φmin

φmax

∆d

∆φ

Fig. 7. Lane Filtering. Left: Coordinate system for the lane estimation
and control with some line detections and the specified dimensions of the
lane and lane markings indicated. Right: The measurement likelihood as a
result of processing one list of segments, such as the ones shown on the left,
which is used in the measurement update step of the filter. Each green dot
corresponds to a vote generated by an individual segment detected in the
image.

Each incoming list of segments constitutes a single mea-
surement. We use each segment to produce a “vote”. The
votes are binned in a histogram and the entire histogram
represents the measurement likelihood (Fig. 7).

Once all of the segments have been processed, the histogram
is normalized and used to perform the measurement update
in the Bayes filter.

F. Lane Controller

Once we have an estimate of the position and orientation
of the Duckiebot in the lane, we use it to generate the control
signals to drive down the lane. We have designed the curves
explicitly such that the proportional error as the Duckiebot
performs a turn (Fig. 3-(e)) is small enough such that it is still
within the basin of convergence of a simple linear tracking
controller. This alleviates the need to do any parameterization
of the reference trajectory.

A proportional-derivative (PD) controller is employed, in
which the control command takes the form u(t) = kdd(t) +
kφφ(t) (the kφ terms acts like a derivative).

We evaluated the performance of the lane following
behavior on a square track with rounded corners with errors
shown in Fig. 8. Under nominal lighting conditions, the
reliability of the lane following behavior of the Duckiebot is
very high, with a mean time to failure greater than 30 min
and a cross track error within 0.15m at all times.
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Fig. 8. Lane following performance: The lateral displacement and the
relative angle of the vehicle in the lane during a loop traversal.
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Fig. 9. Navigation with map-based localization and route planning. We
use a higher resolution (640x480) image since we can tolerate much higher
latency (≈ 0.5s) and lower throughput (runs at 2Hz).

IV. NAVIGATION

The basic lane following pipeline acts as a nested inner
loop to enable more complex and interesting behaviors. As
an example, an overview of the navigation pipeline is shown
in Fig. 9.

A. Infrastructure - Layer 2- The Signal Layer

The second layer of Duckietown is made of signals, such
as signs and traffic lights. Signs are present in two varieties:
(i) traffic signs; and (ii) street names. The traffic signs can
indicate the traversability of an intersection, the type of
an intersection (traffic light or stop sign), or some other
important road information, as shown in Fig. 10. These
signs alone contain all necessary information for localization
and navigation. Each sign is additionally equipped with
an AprilTag [1] to enable the parallel development of the
algorithms that detect the signs from the components of the
system that use these detections. We constrain the signs to be
placed at one of eight fixed poses on a tile to: (a) guarantee
that the signs are in the camera field of view of a Duckiebot
at a stop line; and (b) enable the automatic generation of the
metric feature map.

B. Map Representation

Since Duckietowns are composed of modular tiles, a map
can be completely specified by a matrix of tile types (shown
in Fig. 3). Additionally, we can specify the presence, type and
position of any signs on these tiles. This matrix can be used
to automatically generate two different map representations:
a metric feature map used for localization, and a topological
network graph used for planning. These two maps are shown
in Fig. 11.

Fig. 10. Traffic and street signs. Traffic signs are used to distinguish among
intersection types and indicate traversability. Road name signs are used
primarily for localization. Each sign is outfitted with an AprilTag of fixed
and known size for ground truth detection.

Fig. 11. A map is inputted as matrix of tile types. From this, two
representations can be automatically generated. Left: The metric feature
map, which uses the exact known locations the signs should be placed at on
the tiles, and Right: A topological graph network that can be used to plan
paths. An example path is shown in red.

Fig. 12. Global localization. Left: The real Duckiebot at an intersection
in Duckietown, Middle: The Duckiebot having localized within the map,
Right: The internal camera view with the sign detections highlighted.

C. Global Localization

Global localization consists of the estimation of the Duck-
iebot pose with respect to a global reference frame. The
knowledge of the pose in a global frame is a key enabler for
other functionalities, such as the planning of a path towards
a desired destination. As is the case for humans, traffic signs
and street names provide a useful tool for localization. In the
baseline localization scheme we assume an accurate map is
provided by the automated map generation scheme (Fig. 11).
However, a natural extension would be to simultaneously
discover the map and localize within it (SLAM). Using the
known size of the tag we can obtain a full relative pose
measurement of the camera with respect to the sign whenever
one is detected. Since the pose of the tag is known, each
detection provides a measurement of the absolute pose of the
Duckiebot. In Fig. 12 the Duckiebot is at an intersection in
Duckietown. From its internal camera it is able to localize
itself on the map.

This basic algorithm ensures accurate localization whenever
tags can be detected. In our tests, the Duckiebot was able to
estimate its position at 2Hz, with localization errors in the
order of 0.1m when at least three tags were visible.

D. Planning

To navigate, the Duckiebot requires a mapping from the
metric location, as determined by the global localization
module, onto the topological road network graph which is
searched over to find connected feasible routes (Fig. 11).

Once the graph is generated and a start and goal location
are specified we apply the A* search algorithm to generate
an optimal plan to traverse the map. An interesting extension
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Fig. 13. A simplified version of the finite state machine used to control
the vehicle. To see the full version, please visit our github repository.

Fig. 14. The Duckiebot as a hybrid system. A bank of controllers are
continuously active. The active motor controller at any instant is determined
by the FSM mode.

would be to plan the paths of multiple Duckiebots simultane-
ously simulating a fleet management system.

E. Finite State Machine

The macro level operation of the Duckiebot is regulated
through a finite state machine (FSM), a simplified version of
which is shown in (Fig 13). The transitions in the FSM are
generated by asynchronous perception-based events, such
as detecting a stop line. The mode is used to control
the Duckiebot in a hybrid (discrete-continuous) system
configuration [24]. A bank of controllers are developed
corresponding to the different desired actions, and the mode
from the FSM in Fig. 13 is used to select which controller is
active and connects that controller to the wheels driver (Fig.
14).

F. Route Traversal

Once a plan has been generated, following it requires exe-
cuting the correct sequence of turns at each intersection. For
the example shown in Fig. 11-(b) this sequence corresponds
to [s, f, s, f, r, f, s, f ], where f , s, r, and l correspond to
follow lane, go straight, turn right, and turn left, respectively.

The traversal of any individual intersection is achieved
by executing the sequence states “LANE FOLLOWING” →
“INTERSECTION TRAVERSAL” in a loop until the final
destination is reached (assuming single-Duckiebot behavior at
this stage we bypass the “COORDINATION” behavior and as-
sume that the intersection is always free). The transition from
LANE FOLLOWING to INTERSECTION TRAVERSAL is
triggered by the arrival at the stop line. The transition from IN-
TERSECTION TRAVERSAL back to LANE FOLLOWING
is triggered by the lane estimate reporting convergence as
measured by an entropy threshold.

Fig. 15. Intersections. (a): Traffic light intersection with four Duckiebots.
(b): A stop sign intersection. In both cases the yellow shaded area corresponds
to the bottom vehicle’s sensor field of view.

LED_detector

LED PERCEPTION

camera 
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raw detection
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(reach out) Interpreted

detection

coordination
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LED_emitter

LED PROTOCOL

LANE/INTERSECTION
POSE ESTIMATION

CAMERA
CALIBRATION

UNIT TESTS

Fig. 16. Communication based on LED frequency detection.

V. MULTIROBOT BEHAVIORS

The most advanced behaviors involve the interaction of
many Duckiebots navigating in the same Duckietown. In this
scenario, the Duckiebots must coordinate to share the roads
and intersections.

We consider two types of intersections: traffic lights, and
stop signs, as shown in Fig. 15. Traffic light intersections are
a simpler and centralized solution to intersection negotiation.
Stop signs require inter-Duckiebot communication. Commu-
nication is decentralized and perception-based, employing
LEDs to signal intentions. The situation is complicated by
the fact that the Duckiebot “to the left” is outside of the
camera field of view when the Duckiebot is at the stop line,
as shown in Fig. 15.

A. Infrastructure - Traffic Lights and LEDs

The traffic lights are equipped with LEDs facing each
incoming road, and are constructed in the same way as the
Duckiebots, but without a chassis.

B. Blinking LED Detection and Interpretation

The communication system based on LEDs has two
decoupled components: the detector, which captures a camera
stream and determines positions and frequencies of all LEDs
present in the scene; and the interpreter, which receives this
information and labels each detection with a physical object
(e.g. vehicle or traffic light) and a coordination message.

An overview of the LED communication scheme is shown
in Fig. 16. The details of the LED detector and interpreter
are shown in Fig 17.

The interpreter leverages the assumption that the LEDs
detected above the horizon belong to traffic lights, and those
below correspond to Duckiebot communication LEDs.

C. Coordination Behaviors - Traffic Lights

Traffic lights at intersections sequentially communicate a
”go” signal to one of the incoming roads while signalling
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Fig. 17. LED communication algorithm. Top: The detector sequence of
images Ik is captured from the camera (top left) and a relevant area (blue)
is cropped and downsampled according to a low-resolution grid. The time-
variance of the brightness is computed in each cell, producing a variance
map (top right) whose peaks define candidate cells. FFT peak frequencies
of the brightness on candidate cells are compared the known frequencies of
the signals for matching, producing raw detections. Bottom: The interpreter
takes the raw detections (green) and applies image-coordinate thresholds to
determine the messages coming from the traffic light, the left, the opposing
and the right vehicles in a scene.

a ”stop” in the other directions. Signals are encoded in the
blinking frequency of LEDs. As Duckiebots interpret these
signals they avoid ”jamming” the center of the intersection
ensuring smooth traffic flow. When a Duckiebot arrives at
a stop line, it starts detecting the frequency of the LEDs
in its field of view and once it detects the frequency
corresponding to the “go” signal, it starts maneuvering through
the intersection.

D. Coordination Behaviors - Stop Sign Intersections

Stop sign intersections do not have any centralized infras-
tructure, so the Duckiebots communicate with one another
to coordinate their turns through the intersection using LEDs
mounted on each Duckiebot. As shown in Fig. 15, a Duckiebot
at an intersection is not visible to a Duckiebot on its left
due to the finite sensor field of view. The detection of the
signal emitted by the other Duckiebots takes approximately
2s and the detection phases of individual Duckiebots are
not synchronized. Intuitively, the decentralized negotiation
protocol observes the following rules: (a) A Duckiebot yields
to a Duckiebot on its right (since it sits outside of the field of
view of the sensor of the Duckiebot to the right), (b) when
two mutually opposing Duckiebots arrive at an intersection,
the one that arrived earlier goes first, and (c) when the two
opposing Duckiebots arrive simultaneously with respect to
the detection precision, the Duckiebots resolve the ambiguity
by waiting for a random amount of time before their next
attempt to negotiate with the other Duckiebots.

The coordination scheme progresses through a series of

Fig. 18. Coordination at a stop sign intersection. (a) Two Duckiebots
are waiting at a stop line. (b) The Duckiebot on the left is reserving the
intersection and then in (c) is allowed to cross the intersection. (d) This
Duckiebot turns off its LED and transitions to the LANE FOLLOWING
state. (e) The other Duckiebot reserves the intersection and in (f) is allowed
to enter the intersection.

states as shown in Fig. 13. In AT STOP CLEARING, the
Duckiebot is waiting a predetermined time to guarantee that
the intersection is free, in AT STOP CLEAR a Duckiebot
is waiting with no other Duckiebots in the intersection to
guarantee that it is clear to go, in RESERVING the Duckiebot
is signaling (through its LED) that it will attempt to traverse,
in CONFLICT two Duckiebots have attempted to reserve the
intersection simultaneously, and finally in GO the Duckiebot
starts to navigate the intersection.

E. Evaluation

We tested the coordination behavior on both types of
intersections and demonstrated the performance for several
hours. Whe the vehicles stopped at the stop line oriented
along the lane, the coordination behavior was able to reliably
schedule the vehicles to pass through the intersection and
avoid collisions. The result of the coordination behavior at a
stop sign intersection is shown in Figure 18.

VI. RESOURCE MANAGEMENT

Our objective as stated was to build an inexpensive
yet capable platform for autonomy education and research.
However, when the cost is reduced, available resources, such
as sensing, computation, memory, power, and communications
bandwidth are necessarily reduced. We have employed two
fundamental strategies in our software architecture to reduce
resource usage: event-based computation and mode-driven
perception.

1) Event-based Computation: In our implementation we
leverage the robot operating system (ROS), which predomi-
nantly employs a publish-subscribe model for data transport.
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TABLE III
MODE-BASED RESOURCE ALLOCATION

Active Perception Modules

Mode Li
ne

D
et

ec
to

r
La

ne
Fi

lte
r

St
op

Li
ne

Fi
lte

r
Ve

hi
cl

e
D

et
ec

to
r

Si
gn

D
et

ec
to

r
LE

D
D

et
ec

to
r

LE
D

D
ec

od
er

JOYSTICK CONTROL
LOCALIZE 3
LANE FOLLOWING 3 3 3 3
COORDINATION 3 3
INTERSECTION TRAV. 3 3
AVOID VEHICLE 3

Due to the limited computation resource of the platform,
applications (nodes) utilize an event-based and rate-limited
processing and publication scheme: a node only publishes
when the output is significantly different from the last
published output and when the limit on publication rate is
preserved.

2) Mode-Driven Perception: The most computationally
intensive tasks tend to be those related to perception, particu-
larly since we are using vision as the only sensing modality.
The most complex multi-robot behaviors require the robot to
perform a number of perceptual tasks (line detection, lane
filtering, stop line filtering, sign detection, LED detection, LED
decoding, vehicle detection) but not simultaneously. Therefore,
we impose a template whereby upon mode transitions a set
of switches are published. These switches are used by all
nodes and allow them determine the necessary input (images)
at a given time. An overview of which perceptual modules
are active in each of the FSM modes is given in Table III.
We also control the resolution of the camera imagery based
on the requirements of the given task, in a similar way.

VII. CONCLUSION

We have presented “Duckietown,” a flexible platform for
autonomy education and research. We have leveraged precise
specification and resource management in developing the
system to enable a sliding scale of realism. We have targeted
an autonomous driving application here, however we believe
this model, with augmented capabilities, can be extended to
autonomy in other less structured domains, such as air, sea,
and perhaps space robotics.

All materials are available under open source/free software
licenses; pointers to the materials can be found at the website
duckietown.mit.edu. Our hope is that others in the robotics
community will adopt the platform and contribute to its
growth.
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