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Abstract: This paper describes the architecture and implementation of a heterogeneous team
comprising unmanned ground vehicles and blimp robots capable of navigating unknown subter-
ranean environments for search and rescue missions. The ground vehicles are equipped with a range
of sensors for accurate perception, localization, and mapping. The blimps feature a long flight
duration and collision tolerance when traversing uneven terrain. The design of the system was
meant to satisfy the requirements of the Defense Advanced Research Projects Agency (DARPA)
Subterranean Challenge in terms of perception capability and autonomy. To facilitate navigation
through smoke-filled spaces, we employed novel millimeter wave radar to enable cross-modal
representations for integration via deep reinforcement learning. The autonomy of the proposed
scheme was augmented using simulations to train deep neural networks, thereby allowing the
system to perform sequential decision-making for collision avoidance and navigation toward a specific
goal. The navigation system was evaluated in the DARPA SubT Urban Circuit, and quantitative
localization results and recovery strategy from failures was discussed. The proposed communication
system comprises mesh WiFi with XBee (ZigBee network with XBee radios) and ultra-wideband
(UWB) communication modules as well as spherical nodes that can be shot out like a cannonball and
miniature cars deployed as mobile nodes. The propagation and radio signal strength index of various
modules were evaluated using data collected during field tests in order to overcome the uncertainties
of subterranean environments, including non-line-of-sight propagation, multipath propagation, and
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fading reception. We also discuss the lessons learned during this project and reflect on future
plans.

Supplementary Material
For a supplementary video visit: https://vimeo.com /501143422
For the open-source dataset visit: https://arg-nctu.github.io/projects/team_ nctu subt.html

Keywords: subterranean robotics, learning, navigation, rotorcraft

1. Introduction

Search and rescue (SAR) robots are generally used to improve situational awareness and explore
potentially dangerous areas in the event of disaster. SAR robots have been developed for operations
on the ground, in the air, and in water (Delmerico et al., 2019). Legged robotic systems have also been
developed to perform complex missions on particularly uneven terrain. Unmanned ground vehicles
(UGVs) and quadrotor drones were used in the collaborative mapping of damaged buildings after
the 2011 Tohoku earthquake in Japan (Michael et al., 2012). Unmanned aerial vehicles (UAVs)
operating at low altitude provide reconnaissance with a wide field of view (FOV) (Gawel et al.,
2018). In some instances, UAVs are flown ahead of UGVs to detect holes and other obstacles (Stentz
et al., 2002), to map out possible ground routes (Guérin et al., 2015), or to assist UGVs in navigating
through unknown environments (Kelly et al., 2006) (Dang et al., 2020).

Quadcopter UAVs (referred to as drones) are particularly popular for their speed, small airframes,
and precise maneuverability over rough terrain. However, drones are limited in terms of flight time
(16-40 min) (Sa et al., 2017) and highly prone to damage in the event of collision. UAVs can be
attached to UGV platforms (Richardson et al., 2013) to reduce power consumption. One study
developed a hybrid UAV/UGYV vehicle (Fan et al., 2019) capable of ground travel (to reduce power
consumption) as well as flight (to overcome difficult ground conditions). Rolling is far more efficient
than flying in terms of navigation, autonomy, run time, and traveling distance.

Existing robot perception systems are highly susceptible to optical sensor degradation under
smoke or foggy conditions, and the Defense Advanced Research Projects Agency (DARPA) Subter-
ranean (SubT) Challenge is meant to simulate these conditions. Laser range finder (LiDAR) inputs
tend to be unreliable, due to the sensitivity of cameras to variations in lighting. Degraded sensing
due to low illumination and/or a featureless geometry can seriously undermine the localization
performance of conventional sensors. Alternative approaches to dealing with visually degraded
environments include thermal imaging (Shivakumar et al., 2020) for artifact segmentation, and
millimeter-wave (mmWave) radar fusion (Kramer et al., 2020) for ego-velocity estimation. Radar
data using self-supervised learning have been used to derive a traversable route (Broome et al.,
2020). A dataset with raw radar samples in various scenes was proposed focusing on robot perception
using millimeter-wave radar (Kramer et al., 2021). Other studies have combined ultra-wide-band
(UWB) ranging measurements with inertial measurement units (IMUs) and LiDAR to facilitate
localization in indoor environments. Ranging measurements from known UWB anchors combined
with IMUs using extended Kalman filters was proposed for a robotic blimp (Mai et al., 2018).
Localization in tunnel-like environments can also be improved by combining ranging measurements
in known positions with LiDAR (Zhen and Scherer, 2019). UWB measurements can be considered
an environmental “feature” for use in estimating robot trajectories relative to a map (Song et al.,
2019).

Facilitating the situational awareness of operators at base stations is crucial to SAR operations
in underground environments. Radio signal propagation can be affected by stochastic effects,
including shadowing and fading under the effects of unstructured/irregular layouts. (Hsieh et al.,
2008) constructed a radio signal strength indicator (RSSI) mapping scheme to plan exploration
tasks involving multiple robots. A hybrid mesh network to extend communication distance was
proposed (Nagatani et al., 2013), which integrated a high-power wireless communication device with
a cable reel-out mechanism using a twisted-pair metal cable. Deployable and dynamic nodes have
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(a) Tunnel Circuits. (b) Urban Circuits. (c) Shimen Reservoir.

Figure 1. Heterogeneous robot team, including an autonomous blimp and UGVs (Clearpath Husky and Jackal).
The robot team was tested in the Tunnel and Urban circuits in the DARPA SubT Challenge as well as in local
field-testing sites including artificial tunnels beneath Shimen Reservoir and Buddha's Hand (BH) ocean-formed
cave.

also been used to extend the coverage of wireless signals from base stations; however, the placement
of nodes in usable or optimal positions is often prevented by physical obstacles. Flocks of UAVs with
nodes carried by ground vehicles is another approach to improve connectivity (Basu et al., 2004;
Min et al., 2016). Regardless, constructing RSSI maps and maintaining connections among robots
and nodes are main challenges pertaining to communication systems in SAR scenarios.

In the following, we outline our proposal for a heterogeneous team of robots, focusing on mobility,
perception/autonomy, and communications:

1. Low-cost autonomous blimps for flights of extended duration: Blimps consume far
less power than drones and are far more tolerant of collisions, both of which are primary
considerations in SAR scenarios as well as the DARPA SubT Challenge (DARPA, 2019).

2. Platform-agnostic mmWave sensor tower with learning-based algorithms for nav-
igation: In experiments, mmWave radar devices have proven highly effective as sensors in
visually degraded environments. We developed a learning-based navigation policy network to
facilitate range detection using mmWave radar or LiDAR.

3. Deployable nodes for localization and communication: Estimating the RSSI of XBee
and UWB modules to construct RSSI maps is essential to communications in underground
environments. We developed and field tested deployable nodes and evaluated them extensively
in regular and irregular real-world environments.

This article extends our previous work (Huang et al., 2019) and (Huang et al., 2021) with an
overview of the design and performance of heterogeneous robot team developed by the NCTU Team
for the DARPA SubT Challenge. Section 2 summarizes the system architecture. Section 3 describes
the design of the software infrastructure and the set of key algorithms developed for environmental
perception and autonomous navigation. Section 4 describes the communication nodes and the RSSI
maps. Section 5 reflects on the performance of the proposed system and lessons learned.

2. System Architecture
2.1. Problem Statements and Challenges

Navigating through subterranean environments, finding and locating designated artifacts, and then
reporting the results imposes a number of daunting challenges, which can be categorized as follows:

o Mobility: Navigating through rough terrain within a limited time window. The duration of
each run in the DARPA Tunnel and Urban Circuits competitions was one hour. The developed
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vehicles required a certain moving speed to search the large environments, i.e., > 2 km long
competition sites.

e Perception and Autonomy: Ensuring robust navigation in the search for artifacts under
degraded sensing conditions.

1) Artifact Search: the artifacts in the Tunnel Circuit were all visible, including a survivor, a
cell phone, a backpack, a drill, and an extinguisher to be located. The Urban Circuit included
four visible artifacts (survivor, cell phone, backpack, and vent), and one artifact of COs gas
requiring olfactory sensing. Under the scoring scheme of the competition, every valid artifact
report would earn the team one point, as long as the artifact type was correct and the reported
location estimated by localization and mapping was within 5 m of the ground truth location
(Euclidean distance).

2) Localization: the simultaneous localization and mapping (SLAM) problem was represented
is a factor graph (Kaess et al., 2012), including robot poses as states and the constraints that
relate these hidden states. A SLAM algorithm was formulated as odometry « to connect consec-
utive mobile robot poses z;, and artifact detections were represented as measurements m; of the
artifact landmarks or deployable node landmarks lj. The constraints m; = {r;, 6;} consisted of
a range r and bearing 6. The implementations of loop closure were carried out in the lightweight
and ground-optimized lidar odometry and mapping (LeGo-LOAM) library (Shan and Englot,
2018), where our artifact and deployable node landmarks were not used for loop closure.

3) Autonomous navigation: multiple robot platforms were assumed to operate in static
environments without other dynamic obstacles. We aim at developing decentralized collision
avoidance control policies 7y, for forward exploration and goal navigation myoq, Where the
parameters g of the policies were trained in the Virtual SubT Gazebo simulation.

¢ Communication and Coordination: Given any robot pose x; and the base station position
p, the RSST map is a function ¢ : (p,z;) — R that returns the estimated RSSI between p and
x;. Our mission was to maintain the RSSI above a certain level, and transmit robot pose x;
and the mapping C; to the base station, where a human supervisor designated subgoal points
{9r1,9r.25 -, gr,n} to each robot r for goal navigation. This paper focused on systematically
evaluated radio propagation of the line of sight (LOS) RSSI gradient GE{S and nonline of
sight (NLOS) G;YkLOS in the j subterranean environments {Tunnel, Cave, Corridor} using
the & mesh communication modules {UW B, X Bee}.

2.2. System Architecture

As shown in Figure 2, the proposed system was designed to tackle the challenges of mobility,
perception, autonomy, localization, and communication. Mobility is dealt with using a hetero-
geneous UGV-blimp with multimotor propulsion to carry a large payload of sensors through
rough environments for an extended duration. Perception and autonomous operations rely on
deep reinforcement learning (RL) for goal navigation and collision avoidance. We also developed
deployable nodes for localization and communication based on analysis of radio propagation in
subterranean environments.

Figure 3 presents a schematic illustration showing the computational hardware used in the
proposed system. The system can be divided into the blimp (Duckiefloat), the UGV (Husky), the
base station, and DARPA infrastructure. Duckiefloat and Husky were tasked with communications
and perception. Note that Husky was also meant to operate autonomously using ranging and location
Sensors.

2.3. Robotic Blimp - Duckiefloat

The design of the proposed Duckiefloat robotic blimp was inspired by the resource-constrained
Duckietown (Paull et al., 2017) and Duckiefly (Brand et al., 2018). Blimps have been widely used for
transport and surveillance (Fukao et al., 2003). Small blimps equipped with high-capacity batteries
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Figure 2. System architecture: (1) Proposed heterogeneous team of robots for mobility; (2) Algorithms used
for perception and autonomy; and (3) Deployable nodes for communication and localization.
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Figure 3. Computational hardware used in the Duckiefloat, Husky, base station, and DARPA modules. Note
that the Husky and Duckiefloat play different roles in the heterogeneous robot team.
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Table 1. Local field test environments.

Field Site Total Length Site Area Development Learned from Fieldwork
18-Peak Mt. Dugout 20 m 15mx 10 m Envelop and Frame

Houli Tunnel 1.2 km 1200 m x 3.2 m Multirotor Design

Indoor Corridor 120 m 75 m x 50 m Wider Sensor FOV

Shimen Tunnel 4 km, 4 Levels 120 x 230 Airflow/Power Consumption

BH Cave 200 m 65 mx 28 m Airflow/Power Consumption

(b) Abandoned railway tunnel in Houli.

(a) WWiIl-era bunker for testing.

Figure 4. Field tests of robotic blimp before attempting the Tunnel circuit

can hover stably for an extended duration (Palossi et al., 2017), and such devices are highly tolerant
of collisions, which is crucial when navigating through unstructured environments (Yao et al., 2017;
Yao et al., 2019; Burri et al., 2013).

The buoyancy, mass effects, and aerodynamics of blimps are similar to those of submarines.
Several model-based schemes have been devices to control the movement of blimps (Gonzalez et al.,
2009; Fedorenko and Krukhmalev, 2016). One study by (Ko et al., 2007) used model-free RL with a
Gaussian-process model for yaw control. (Rottmann et al., 2007) used RL with Gaussian processes
to approximate the Q function of altitude controls. (Hygounenc et al., 2004) used vision-based
localization and mapping (SLAM) for blimp localization. (Mai et al., 2018) implemented a local
pose estimator using three UWB radio sensors, one gyroscope on a blimp, and four additional UWB
sensors in an indoor stadium.

Note that throughout the development of the proposed system (April 2019 to April 2021), we
carried out field tests in multiple tunnels and caves. Table 1 summarizes the total length of the
explorations, the area of the sites, and advancements derived from these expeditions.

2.3.1. Envelope, Payload, and Frame Designs

The first field test in April 2019 was carried out in an abandoned WWII bunker, which included
two intersections within a distance of approximately 20 m. The original route to deeper tunnels was
closed due to safety considerations.

We had to limit the envelope of the blimp to deal with the tight passages in this subterranean
environment; however, this had a negative impact on payload, which included a battery for mobility
and illumination. Our objective was to power the blimp for one hour; i.e., the duration of each
run in the DARPA Tunnel and Urban Circuits competitions. The robotic blimp in its DF-v1
configuration had all of the sensors, computing units, and motors attached directly to the envelope.
This blimp succeeded in traversing the route using RC controls; however, the process was somewhat
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Table 2. Envelop developments.

Circuit Tunnel DF-vl  Urban DF-v2  Cave/Final DF-v3 Note
Envelope floating (g)
1.2m x 1.2m x 2.5m v 1,600
1.5m x 1.bm x 2.5m v 2,600
1.8m x 0.8m x 2m v 950
1.2m x 1.bm x 2.5m v 2,000
Multirotor Designs

4 DC motors, 3-inch propellers (4) v

6 DC motors, 3-inch propellers (6) v

4 DC, 2 Brushless, Servo motors (7) 4

(a) Tunnel Circuit (b) Urban Circuit

Figure 5. Envelope designs of duckiefloat in the Tunnel and Urban Circuit. The geometry of corridors varied
more in the Urban Circuit than in the Tunnel Circuit. Thus, we modified the shape of Duckiefloat and removed
some of the payload to allow passage through narrow openings.

awkward with the motors attached to the envelope. In an earlier version, we employed a cross-shaped
Styrofoam platform slung beneath the envelop to carry sensors, motors, and controllers. For the
final version, we fabricated a carbon-fiber frame using a three-dimensional (3D) printer, as shown
in Figure 6. The robotic blimp measured 1.2 m x 1.2 m x 2.5 m, which was small enough
to travel through the Tunnel circuit. When filled with helium gas, the blimp had a payload
capacity of approximately 1600 g, which was sufficient to carry the electronic devices and batteries
(Table 2). The geometry of tunnels in the coal mine did not vary. We observed a difference in
atmospheric pressure between the bunker and the controlled indoor environments, which necessitated
modifications to the envelope. We increased the dimensions of the envelope for the Urban Circuit to
1.5m x 1.5bm X 2.5m to increase the payload capacity to 2500 g, which was necessary for additional
devices including LiDAR.

Note that this larger blimp would have been too large to pass through the small openings in the
Urban Circuit Beta course in the DARPA competition. Thus, we had no choice but to modify the
dimensions of the envelope to 0.8 m x 1.8 m x 2 m [Figure 5 (b)]. This reduced the payload to just
950 g, thereby necessitating the removal of several sensors, which in turn shifted the center of mass
with a corresponding effect on blimp navigation and controls.

2.3.2. Multirotor Design

We eventually moved to the abandoned Houli railway tunnel measuring 1.2 km in length. Note that
the tunnel is also a popular site for tourists and cyclists, which limited our access. Autonomous
navigation was conducted along the tunnel for roughly 300 m. The blimp could have travelled
farther; however, its progress was interrupted by passing pedestrians and cyclists. During this run,
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Figure 6. Hardware comparison between the various versions of Duckiefloat. The tail motors increased control
over heading. The DC motors in the DF-v2 design provided position control in the x axis and z axis as well as
orientation control in the z axis (i.e., yaw). The brushless motors in the DF-v3 design provided hovering ability
and minor positional control in the x axis. A servo motor was installed to adjust the angle of the brushless motors
in order to balance hovering against forward movement.

the blimp had a number of minor collisions with the walls, which caused a slow leak but did
not hinder operations. The propulsion system comprised two pairs of DC motors in a perpendicular
configuration. One pair of motors was used for altitude control, and the other pair was used to control
horizontal movement by functioning as a differential drive. Note that this scheme was hindered by
the fact that any change in heading led to a corresponding increase in forward velocity. We also
tried reversing using the forward motors, but this caused the motors to fail within a few test runs.
To achieve precise control over yaw rotation, we attached two additional DC motors to the tail of
the DF-v2 and DF-v3 blimps.

2.3.3. Sensors and Computation Units

The robotic blimp was required to follow the tunnel path and search for artifacts in a dark
environment. We therefore required a lightweight camera with depth information operable in
low-light conditions. We used the Intel RealSense D435 depth camera as our main sensor. Intel
RealSense D435 also provided data for visual odometry to construct maps and localize the robot
within the tunnel. A Raspberry Pi 3B with an Adafruit DC Motor Hat was used as the motor
controller. A NVIDIA Jetson Nano was the main computing unit responsible for perception and
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other high-level tasks. The robotic blimp was also equipped with an infrared sensor to measure the
altitude of the blimp above the floor.

In the Tunnel Circuit, the robotic blimp traversed the main passage for roughly 50 m before
becoming trapped in a branch segment. These experimental runs in the tunnel revealed a number
of drawbacks to the four-motor configuration, including the inability to recover after becoming
trapped. In preparing for the Urban Circuit, we prepared a general indoor environment on campus,
including corridors and two intersections in an H pattern.

The DF-v1 robotic blimp operated in autonomous mode for 47 minutes during which it travelled
approximately 500 m, including a successful autonomous traversal of a stairway. The robotic blimp
was trapped eight times at corners and narrow paths, all of which required recovery by a human
supervisor. These difficulties can be attributed to the limited FOV of the RGB-D camera. This
motivated our design of mmWave radar devices for wide FOV sensing. Note that the UGVs were
already equipped with mmWave radar devices; therefore, we briefly considered designing the robotic
blimp to work directly with the UGVs.

2.3.4. Motor Design and Power Consumption for Airflow Conditions

Considering weight and power consumption, we initially selected DC motors over brushless motors;
however, during the competition runs, in-tunnel airflow overpowered the motors. We therefore
replaced the DC motors in the vertical pairs with brushless motors, and added a tilting motor
to provide control in either the upward or forward directions. We then compared the DF-v2 and
DF-v3 multirotor designs in terms of energy consumption by collecting flight data and logging
battery voltage and current levels with the velocity set at 0.3 m/s. The average power consumption
of the motors on the DF-v2 and DF-v3 were 15.81 W and 61.54 W, respectively. The power
consumption of the DF-v3 was slightly higher than the rolling mode of the hybrid system (Fan
et al., 2019), and roughly 4x more efficient than in flying mode. The DF-v2 using 6 DC motors
consumed the least power; however, it was suitable only for environments without ambient airflow.
DF-v3 used stronger brushless motors to operate under moderate airflow, resulting in greater
power consumption. Operating sensors and running algorithms, i.e., ORB-SLAMv2 (Mur-Artal and
Tardds, 2017) and cross-modal contrastive learning for representation (CM-CLR) (Huang et al.,
2021) also consumed considerable power.
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Figure 7. Comparison of power consumption by motors in proposed Duckiefloat.
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Table 3. Comparisions of average power consumption (Watts).

Vehicle / Mobility Mode Hovering Flying Rolling Velocity
Rollocopter (Fan et al., 2019) - 971.9 (66.3) 194.5 (17.6) 0.3 m/s
DF-v2 121.04 -
Motors 2.75 (0.28) 15.81 (7.52) - 0.41 m/s
D435 + ORB-SLAMv2 on TX2 105.23 (9.43) -
DF-v3 229.76 -
Motors 2.32 (0.29) 61.54 (18.07) - 0.24 m/s
4x mmWave + CM-CLR on TX2 168.25 (10.00) -
Table 4. Field test results of robotic blimps.
RC or Avg. Speed Avg. Travel Dist.
Env. Vehicle Autonomous (m/s) w/o Collision (m) Note
Maze 1 DF-vl1 Autonomous 0.32 5.19 4 turns, 27 m
Maze 1 DF-v1 RC 0.37 6.75 4 turns, 27 m
Maze 2 DF-v3 RC 0.54 10 17 turns, 100 m
00— —
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Figure 8. Trajectories of Duckiefloat in field tests through mazes: (left) S-shaped testing track setup showing
trajectories of Duckiefloat version DF-v1 in autonomous mode (cyan) and RC mode (brown); (right) Trajectories
of Duckiefloat version DF-v3 in RC mode in a longer (100 m) more complex maze.

2.3.5. Mobility Tests in Controlled Maze Environments and Field Sites
Two indoor maze environments were set up to quantitatively assess the mobility of the robotic
blimp through tunnels with uniform widths and heights but without intersections. Maze 1 included
corridors of roughly 3 m in width passing through four turns over a total length of 27 m. The robotic
blimp navigated through the maze in several runs in the RC mode and autonomous mode (described
in Section 3.2.4). Maze 2 was located in a basement (23 m x 28 m) following corridors of roughly 3 m
in width with cardboard walls measuring 1.78-m high. One lap including 20 turns was approximately
100 m in length, most of which were 90° turns and a few even sharper. Figure 8 illustrates the layouts
of Maze 1 and 2, and the trajectories obtained using precalibrated UWB modules.

While navigating through the two maze environments in RC and autonomous modes, the blimp
was kept in the middle of the route as much as possible. As shown in Table 4, average speed and
average travelling distance without collision were used as mobility performance metrics. Overall, the
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Table 5. Field environments and mobility tests of proposed robotic blimp.

Travel Dist

Dimensions RC/ ————
Exp. Period Locations Width x Height Vehicle Auto <50 >200 Limitation
Tunnel Env.
Apr. 2019 18-Peak Mt. Dugout 2.3 x 2.0 DF-vl RC v
Jul., 2019 Houli Tunnel 32x7 DF-v1 Auto v Diff.-drive Motors
Aug., 2019 Tunnel Circuit 34x22 DF-vl Auto Vv Airflow
Urban Env.
Sep., 2019 Indoor Corridor 27x27 DF-vl  Auto v Sensor FOV
Feb. 2020 Urban Circuit varies (min: 0.9 x 2) DF-v2 Auto v Entrance Dim.
Dec., 2020 Shimen Tunnel 19x21 DF-v3 RC v Airflow
Cave Env.
Apr., 2021 BH Cave varies (min: 0.9 x 3) DF-v3 RC 4 Narrow Passage

human operator (in RC mode) slightly outperformed the autonomous system in terms of average
speed and distance travelled without collision. Nevertheless, the differential drive on the DF-v1
prevented even the human operator from avoiding collisions at corners. The tail motors on the
DF-v3 improved heading control, which significantly extended the average distance travelled without
collision.

We also evaluated the blimps in real-world environments, as shown in Table 5. Two successful
runs were conducted in Houli Tunnel and an indoor corridor. Both of these testing locations were
comparable to the Tunnel Circuit, and airflow was negligible or nil.

In the Shimen Tunnel we tested DF-v3 equipped with stronger brushless motors. Under inter-
mittent airflow, the brushless motors were unable to push the DF-v3 forward under the effects of
external airflow. This might be due to the fact that the tunnel was so narrow that the envelope
nearly filled the tunnel and thus was subjected to the full force of the wind. It appears that this
robotic blimp is well-suited to environments with consistent geometries with minimum width and
height of > 2.5 m and without excessive airflow.

2.4. Autonomous UGV

Two Husky UGVs (Clearpath Inc.) were equipped with an industrial PC (Advantech MIC-770: Intel
i7- 8700 as CPU with a Quadro P2200 as GPU) to process information from sensors and controllers.
Three NVIDIA Jetson Xavier kits were connected to RGB-D cameras (Intel RealSense D435) with
horizontal FOV of 86 degrees and resolution of 640 x 480. We also attached an FLIR Boson 320
thermal camera calibrated using the RGB-D cameras. One Velodyne VLP-16 LiDAR device was
installed for the Tunnel Event and two LiDAR (one installed vertically and one installed horizontally)
for the Urban Event. We also included an MicroStrain 3DM-GX5-45 IMU for SLAM operations. All
of the computing units were connected to form a network via the robot operating system (ROS).
To enable system operations of up to two hours, we installed an additional 85-Ah lithium battery
to supply the power requirements of the sensors, computing units, and two on-board LED lights.

2.5. Deployable Nodes

End-to-end solutions like LoRa (Liando et al., 2019) have drawbacks in NLOS implementations. This
fact necessitated the establishment of a mesh network using WiFi and Xbee to provide sufficient
coverage. Mesh WiFi provided high-bandwidth images to the human supervisor at the base station
in real time, whereas the XBee module provided robust low-bandwidth coverage over a wider range.
XBee is well-suited to emergency stop commands, monitoring the state of robots, and reporting
artifacts. Robot states were determined using UWB ranging measurements, as it is more accurate
than other wireless technologies, such as the Bluetooth, WiFi, and ZigBee. Recent work (Boroson
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Figure 9. UGV Platforms equipped with Velodyne 3D LiDAR for the Tunnel Circuit and Urban Circuit. (a)
LiDAR only and (b) LiDAR and mmWave radar

Table 6. The communication nodes include two deployable anchor nodes, and two self-deployed dynamic nodes.

Development Stages Tunnel Urban Cave/Final
Deployable Nodes tunnel-anchor-ball urban-anchor-brick urban-bbot cave-racecar
Anchor/Dynamic Anchor Anchor Dynamic Dynamic
Shapes Spherical Cuboid Spherical Racecar
Dimensions (cm) 14 L27xW12xH10 24 L57xW30xH30
Weights (w/ Battery) 613g 1,917g 3,176g 3,365g
operating time 2h 2h 1h 15h
Deployments Launch/Drop Drop Self-deployed Self-deployed
N. on each UGV 4 6 - -

Equipped Modules

UuwB v v v v

XBee v v v v

Wi-Fi AP v v v

Speaker v v

et al., 2020) utilized UWB ranging between robots to detect loop-closure in multirobot SLAM
scenarios using pose-graph optimization. Subsequently, an algorithm based on sparsely deployed
UWB ranging beacons for large-scale SLAM were developed (Funabiki et al., 2020). UWB also
allows direct data transmission between two robots as long as they are separated by less than 25
m. We incorporated the three modules within a communication node, thereby allowing the robots
to extend their coverage back to the base station simply by deploying nodes along the way.

As shown in Table 6, our deployable communication nodes included static anchor nodes and
movable dynamic nodes. For the Tunnel Circuit, we fabricated the nodes within a spherical shell
(diameter = 25 cm) to be launched forward into an unknown area (like a cannonball) or dropped
through tubes on either side. Each Husky UGV carried six nodes. In the competition run, the nodes
dropped by the Husky were meant to roll toward the wall, as shown in Figure 10 (a); however, many
of them ended up in less than ideal locations. For the Urban Circuit, we included a WiFi access
point (WiFi AP) within nodes that had be redesigned as a brick. The deployment system on the
Husky robot carried six of these nodes, as shown in Figure 10(b).

A limited number of deployable nodes would hinder scaling up to larger environments, such as the
> 2-km long competition sites. We therefore also considered dynamic nodes, including a spherical
robot [Figure 10(c)] designed to go down stairs in the Urban Circuit and a one-tenth scale race car
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(c) (d)

Figure 10. Communication nodes: (a) Spherical anchor node designed to be launched or dropped; (b)
Deployment system on Husky robot carrying six brick-shaped anchor nodes; (c) Self-deployed spherical robot
as movable dynamic node; and (d) Rapid self-deployed race car robot functioning as dynamic (movable) node.

to cover large areas with greater speed and maneuverability than those of the Husky and Jackal
[Figure 10(d)]. Essentially, the movable dynamic nodes were meant to serve as “shuttles” for the
physical transfer of data packets between nodes separated by a wide distance.

3. Perception and Autonomy
3.1. Artifact Search

3.1.1. Training Dataset

The Tunnel Circuit included a survivor, a cell phone, a backpack, a drill, and an extinguisher as
artifacts to be located. We placed the artifacts in various places, including stairs, interior rooms,
corridors, and a basement. RGB-D images were recorded using Intel RealSense D435 mounted on a
handheld device or a Husky robot. The images of artifacts were affected by variations in illumination
as well as the reflectivity of the object, the viewing angle, and distances to subject. The artifacts
were labeled manually using the LabelMe tool (Wada, 2016; Russell et al., 2008). The data collection
procedure for the Urban Circuit was similar to that of the Tunnel Circuit, with the exception that
a FLIR Boson 320 thermal camera was mounted on the handheld device. The four visible artifacts
were the survivor, cell phone, backpack, and vent. The total number of images and the corresponding
paired annotations are presented in Table 7.

3.1.2. Semantic Segmentation Algorithms
In the Tunnel Circuit, we used fully convolutional networks (FCNs) (Long et al., 2015) within a
perception pipeline to estimate the pixel-wise segmentation of artifacts. The resolution of input RGB
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Table 7. Training datasets and models.

Datasets Tunnel Urban
N of Images/Anno. 12 664 4071
Artifacts

Survivor 1545 1151
Cellphone 1435 918
Backpack 3348 910
Drill 3256

Fire Ext. 3333

Vent 1092
Models

tunnel-fcn v

urban-fcn v
urban-mask-rcnn v
urban-yolact v

MaskRCNN Yolact FCN

Figure 11. Samples of segmentation results from the SubT-Artifacts-6k Dataset. The frames per second (FPS)
of running Mask-RCNN, Yolact, and FCN on each frame of resolution 544 x 1024 using a NVidia Jetson Xavier
embedded computer are 1.0, 2.4, and 1.9, respectively.

images was maintained at a low level (480 x 640), considering the limited onboard computation. We
found that the vanilla FCN performed poorly in dark environments, and the prediction masks tended
to break down. We attempted a patch generative adversarial networks, but this did not improve
prediction accuracy. For the Urban Circuit, we switched to Mask-RCNN to enhance accuracy (He
et al., 2018) and Yolact to enhance efficiency (Bolya et al., 2019). As shown in Table 7 and Figure 11,
we trained two model using the training datasets obtained using Mask-RCNN and Yolact.

3.1.3. SubT-Artifacts-6k Dataset: A Test Dataset using DARPA-released Logs

We manually retrieved image frames containing artifacts from the DARPA-released ROS bag files
for labeling as a test dataset. We collected approximately 6,000 image frames. Table 8 lists the
average precision (AP, based on the COCO Dataset protocol (Lin et al., 2014)) of Mask-RCNN
and Yolact when applied to four classes of artifact in six different logs. Yolact was considerably
faster than Mask-RCNN (Bolya et al., 2019), which operated 4 frame per second (FPS) and 1.7
FPS on the hardware of NVidia Jetson Xavier embedded computer, respectively). However, the
AP predicted by Yolact was lower than that predicted by Mask-RCNN. Specifically, Mask-RCNN
outperformed Yolact in detecting the survivor, backpack, and vent artifacts. The Yolact model was
more sensitive to noise (see Figure 11) in the subterranean environments. The performance of Yolact
was close to that of Mask-RCNN only in detecting the cell phones, which were largely disregarded
by Mask-RCNN.
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Table 8. Evaluations of the SubT-Artifacts-6k Datasets extracted from six DARPA-released ROS bag files.
Average Precision (AP) was reported. Mask-RCNN outperformed Yolact in 3 artifacts (survivor, backpack, and
vent).

Circuit Tunnel Tunnel Tunnel Urban Urban Urban Summary
ROS Bag File sr_B_routel sr_B_route2 ex_B_routel a_Ilvl_1 a_lvl_2 b_lIvl_2

No. of Artifacts 10 9 12 7 5 10

Survivor (N) 4 1 2 3 1 3

Frames w/ Artifact 168 323 177 102 248 91

Mask RCNN 0.291 0.199 0.823 0.562 0.806 0.724 0.566
Yolact 0.083 0 0.107 0.032 0.004 0.004 0.004
Cell phone (N) 1 1 2 1 - 2

Frames w/ Artifact 66 84 37 200 - 95

Mask RCNN 0.984 0.839 0 0 - 0.518 0.468
Yolact 0.924 0.678 0.194 0.025 - 0.582 0.480
Backpack (N) 3 4 1 1 3 3

Frames w/ Artifact 97 113 106 26 468 65

Mask RCNN 0.81 0.99 0.836 0 0.899 0.676 0.589
Yolact 0.58 0.292 0.415 0 0.738 0.097 0.337
Vent (N) - - - 2 1 2

Frames w/ Artifact - - - 78 65 136

Mask RCNN - - - 0.735 0.954 0.621 0.770
Yolact - - - 0.245 0.43 0.217 0.297

3.2. Autonomous Navigation

3.2.1. Sim-to-real Deep Reinforcement Learning

Researchers have long sought to develop high-quality simulation environments for learning-based
navigation. The goal has been to provide high-dimensional input (raw images) rather than low-
dimensional inputs. (Sadeghi and Levine, 2016) used simulations exclusively in the training of
policies for navigation within virtual environments built using the 3D program Blender, which
included rendered images with randomize textures and lighting to create a set of visually diverse
scenes. A Q-function model was used to predict robot actions based on camera observations.
A realistic 3D simulation framework (AI2-THOR) was developed with the Unity 3D physics
engine (Zhu et al., 2017). A target-driven visual navigation model was then trained using high-
dimensionality image inputs to provide end-to-end prediction from pixel information to actions.
Another work (Jaritz et al., 2018) took advantage of the game engine World Rally Championship
6 , using A3C (Mnih et al., 2016) to learn car control in a stochastic, realistic environment in the
self-supervised mode. The agent took 84 x 84 front view images and the speed as inputs, while
the gas, brake, and handbrake were used as outputs. The Habitat framework (Savva et al., 2019)
provides a photorealisitic environment Matterport3D (Chang et al., 2017) and Gibson (Xia et al.,
2018). Point-goal navigation (Anderson et al., 2018) was carried out based on a deep reinforcement
learning (DRL) model trained using proximal policy optimization (PPO) (Schulman et al., 2017).
Habitat used “embodied” AI to enable actions in environments, rather than in media. Cross-dataset
generalization experiments revealed that the depth sensor was superior to RGB and RGB-D sensors
in terms of generalizing across datasets.

Researchers have recently begun training deep networks using pregenerated occupancy maps,
motion commands, or mapless end-to-end approaches (covering range inputs to actions) for UGVs.
A planner for search and rescue exploration was trained using a 64 x 64 2D local occupancy grid as an
input for a neural network (Niroui et al., 2019). They modified 2D Stage simulation (usually used for
multirobot problems) to train the A3C network for outputs of goal frontier actions. A data-driven
planner to learn motion commands from local geometry obtained using a 2D laser range finder
was proposed (Pfeiffer et al., 2017). Their convolutional neural network (CNN) processed 1080
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Table 9. Overview of the deep RL developments using Virtual-Subt gazebo simulator and several algorithms,
including DDPG (Lillicrap et al., 2016), RDPG (Heess et al., 2015), and D4PG (Barth-Maron et al., 2018), to
optimize rewards to navigate in long tunnel, cave or goal navigation.

Range Additional Network Reward
Models Inputs Inputs Backbone Settings Note
urban-rdpg-fw-v1 1x 241 RDPG Forward Competition Runs
urban-rdpg-fw-v2 1x241 Odom 1 x 2 RDPG Forward In (Huang et al., 2021)
urban-ddpg-fw 1 x 241 Odom 1 x 2 DDPG Forward In (Huang et al., 2021)
cave-ddpg-goal 4 x 241 Goal 10 x 3 DDPG Goal
cave-d4pg-goal 4 x 241 Goal 10 x 3 D4PG Goal

dimensions of laser inputs via convolutional layers with two residual building blocks. The fully
connected (FC) layers then combined the extracted features and the target position. Their model
proved highly capable of avoiding obstacles on the road (even unseen objects) to reach the final
destination. A modified neural network was subsequently developed to down sample 1080 LiDAR
measurement into 36 values via minpooling (Pfeiffer et al., 2018).

Unlike the model proposed in previous work (Pfeiffer et al., 2017), the model in the current
study was simplified to include only FC layers in order to avoid over fitting. It has been shown
that only a 10-dimensional range finds results to decrease the difference between virtual and real
environments (Tai et al., 2017). Asynchronous deep deterministic policy gradient (Lillicrap et al.,
2016; Gu et al., 2017) was then used to train the actor and critic models in a V-REP simulator.
The multirobot collision avoidance problem was tackled in a decentralized scenario (Fan et al.,
2020), in which the observation space was obtained from the last three consecutive frames with
512 range values acquired using a 2D laser range finder, resulting in 1536 dimensions. The actions
were performed in a continuous space comprising translational and rotational velocities. PPO was
used to train the model to enable the direct mapping of raw laser inputs to control outputs
from the stage. They determined that a generalized policy for robots can be used in traversing
simulated environments as well as real-world human-crowded environments. The use of an DRL
agent navigating through an indoor social environment was proposed (Everett et al., 2021). The
algorithm determined the optimal path using a value network trained with RL, using the position and
velocity of the robot and surrounding neighbors (e.g., pedestrians) as inputs. Instead of predicting
an optimal path, the RL agent selected an optimal control command with respect to the state.

Recent work (Kahn et al., 2020) used images as inputs to train a model for path prediction.
A planner was used to help the robot traverse through tall grass and reach a goal deemed as
untraversable, using classic SLAM in conjunction with planning. A data-efficient end-to-end learning
method for goal-conditioned visual navigation was proposed (Manderson et al., 2020). They applied
their system to underwater autonomous vehicles navigating through a coral-rich area to collect
relevant data while avoiding collisions. The conditional network allowed additional goal information
inputs to guide the agent robot to desired destinations.

3.2.2. Navigation with DRL

Our robot was designed to navigate through unknown, static environments that are partially filled
with smoke. We modeled the robot control problem as a partially observable Markov decision process
(POMDP), which is defined as M = {S, A, R, P,~}, where S is the state of the environment, A is
a set of actions, P is the transition function, p(si11]|st, a;) with initial state po(sg), R is the reward
function r(s¢, at), and «y is a discount factor. The state received by the agent is used with a control
policy to generate an action. The transition function then leads the agent to the next state where
it receives a reward. In POMDP, the agent cannot directly observe the full state s;; i.e., it can only
receive the observed underlying state p(o¢|s;). As shown in Table 9, we used several RL algorithms
to train the agent, and trained two policies for the navigation problem. The first one was designed
to maximize exploration rewards and the second one was designed to navigate to a specified goal.
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(a) UGV in Virtual-Subt gazebo simulator. (b) Duckiefloat in Virtual-Subt gazebo simulator.

Figure 12. (a) UGV training control policies in Gazebo cave and tunnel simulation; (b) Duckiefloat model
integrated within simulator to train and evaluate control policies

For the Urban Circuit, we used the Recurrent Deterministic Policy Gradient (RDPG) (Heess
et al., 2015) algorithm to train an agent navigating long corridors, tunnels, and caves. The agent was
optimized to control the robot through access to history h; = (01, a1, 02, a2, ...,a;_1,0:), whereas the
goal of the agent was to set a deterministic policy 7(h;) — R? capable of mapping the observation
history to linear angular actions and maximizing the expected discounted reward. The objective
function of the agent was defined as follows:

o0
th_lr(stwt)] ;
t=1

where 7 = (s1,01,a1,82,...) refer to trajectories. Further details related to reward, action,
observation, and training environment can be found in our previous paper (Huang et al., 2021).
In the Urban Circuit competition, we used the control policy trained via the virtual-subt gazebo
simulator with the RDPG algorithm.

To generalize the proposed method for Duckiefloat, we also integrated the 3D model of Duckiefloat
and an open source blimp model (ootang2018, 2020) within the Virtual-Subt gazebo simulator, as
shown in Figure 12(b). However the complex dynamics of Duckiefloat prevented the RL agent from
learning a robust control policy for navigation. Further works need to investigate the robot dynamics
affects on the RL algorithms.

We also trained a control policy capable of navigating to a designated goal. To train a generalized
model, we used the Virtual-SubT gazebo cave environment with tunnels of diverse size and shape as
well as ramps, as shown in Figure 12. We integrated the Gazebo simulator with the API of OpenAl
Gym to process observation data from the agent, calculate rewards, set actions, and reset the agent.
The important issues and settings are elaborated in the following:

J=E;

o Observations: The field-of-view of LiDAR points covered 240° (from 120° to —120°) with
resolution of 1°. We concatenated four consecutive frames of range data and 10 frames indicating
the relative position of the goal within a single observation space.
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Figure 13. Policy network for goal point navigation showing the CNN feature extraction stage and the fully
connected stage. We stacked four consective frames of point clouds and 10 goal points as inputs to provide the
agent a sense of past trajectories. The subsequent CNN layers were used to extract essential features, after which
goal points were added to the fully-connected layers to compute the optimal command.

o Actions: Actions were designated as linear and angular. Linear actions were limited to [0, 1]
and angular actions were limited to [—1, 1].

e Reward: To ensure the robot avoided collisions and reached the goal, we established the
following dense reward function: (1) relative position toward the goal, (2) reaching the goal,
and (3) penalty for collision.

0.2 ¢f Toward the goal
r_goal =
—0.2 else,

100 if Reach the goal
r_reach =
0 else,

—10 «f Collision

r__collision =
0 else,

r=r_goal +r_reach + r__collision.

Goal point navigation was first trained using the Deep Deterministic Policy Gradient (DDPG)
algorithm (Lillicrap et al., 2016) using an actor-critic structure to train a deterministic policy and
a Q-value estimator. The objective of the actor network was to maximize the Q value. To further
improve navigation performance, we also trained a model using the Distributed Distributional Deep
Deterministic Policy Gradient (D4PG) algorithm (Barth-Maron et al., 2018) using a distributional
critic network, in which the output of the critic network becomes a probability distribution of Q
values to enable robust value estimation.

For both algorithms, the actor networks included two 1D convolutional layers for the extraction
of features from LiDAR points. The flattened outputs of the convolutional layers were then
concatenated with the goal positions from the previous 10 frames for the subsequent fully-connected
layers. A visualization of the network is presented in Figure 13.

Figure 15 presents the trajectory of the robot in the Alpha Course. According to a wheel odometer,
the robot traversed 277.53 m before becoming trapped on a ledge, due to the limited FOV of the
LiDAR sensor. In the Beta Course, the trained policy was too conservative to allow passage through
narrow passages encountered at the beginning, which resulted in the robot circling around in an
open area without exploring.

3.2.3. Nawvigation through Smoke using mm Wave Radar
The Tunnel Circuit presented challenging environmental conditions, including long, unexplored
tunnels filled with smoke capable of interfering with cameras and LiDAR devices. To overcome these
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Figure 14. (a) Navigation policy using mmWave sensor and CM-CLR to navigate through smoke-filled environ-
ments in the Tunnel Circuit (Huang et al., 2021); (b) Wall following strategy using the A* algorithm to navigate
through the Tunnel Circuit.

difficulties, we employed lightweight inexpensive mmWave radar. We observed a notable reduction
in performance when using mmWave radar alone, due to low spatial resolution and the effects
of noise. Thus, we employed the cross-modal contrastive learning for representation (CM-CLR)
method to maximize agreement between radar data and LiDAR data in the training stage. This
was implemented in a reinforcement learning framework, and compared with cross-modal generative
reconstruction and other baseline approaches. Our proposed end-to-end DRL policy with contrastive
learning proved highly successful in navigating through a smoke-filled maze. The proposed scheme
outperformed generative reconstruction methods, which tended to generate noisy artifact walls or
obstacles. We refer the readers to our recent work (Huang et al., 2021) for details.

3.2.4. Classic Approaches for Navigation as Baselines

We implemented a policy based on a map-localize-plan to follow the tunnel as the baseline for
exploration. We built an occupancy grid map by parsing the point cloud gathered from LiDAR
inputs. The map was then used for a local planner, sweeping from —90 to 90 degrees with a radius
of 2 m. A goal point was then set to the found traversible point via A* search.

We implemented tunnel-following policy as the baseline for blimp exploration. Analysis of the
point cloud gathered from the RGB-D camera was used to identify points of interest and project them
onto the plane parallel to the ground. We then searched line segments in the image and classified
them as right, left, or front wall. The slopes and intercepts of lines related to the various classes of
wall were used to determine the state of the blimp. The state of the robot at time ¢ is represented as
xy = (dt, ¢r),where d; indicates the lateral distance between the blimp and the center of the tunnel
at time ¢, and ¢; is the angle relative to the tunnel axis. A proportional-integral-derivative (PID)
controller was used to control the state of the robot with target d = 0 and ¢ = 0 , thereby ensuring
that the blimp would remain in the middle of the tunnel with its yaw angle parallel to the length of
the tunnel. We used another PID controller for altitude control with the goal altitude set at 0.6m.

3.3. Simultaneously Localization and Mapping

Simultaneous localization and mapping (SLAM) has been studied extensively for nearly 30 years [For
an overview (Durrant-Whyte and Bailey, 2006)]; here we surveyed SLAM studies for subterranean
environments. An earlier work (Huber and Vandapel, 2003) used a 3D LiDAR device mounted on a
cart to perform 3D mapping of an underground mine. They used graph optimization with a global
consistency measure to detect and avoid erroneous but locally consistent matches. Subsequently
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an integrated localization system for robots in underground environments using only IMUs was
proposed (Xiong et al., 2009). Recently a benchmark dataset of STIX and Tunnel Circuit applying
state-of-the-art algorithms was reported (Rogers et al., 2020). LiDAR-based SLAM algorithms,
such as OmniMapper (Trevor et al., 2014) and Cartographer (Niichter et al., 2017) have produced
impressive results in terms of root mean square error over long trajectories, accurately localizing
ground truth artifact landmarks within 5 m on a global map. Vision-based methods, such as
ORB-SLAM2 (Mur-Artal and Tardds, 2017), do not perform well in dark environments in terms of
tracking, due largely to the failure of relocalization to recover the path after tracking is lost.

For the Tunnel Circuit, we used the ORB-SLAM2 (Mur-Artal and Tardds, 2017) algorithm for
onboard visual odometry. Consistent with the results in the literature, the algorithm was vulnerable
to fast movements (motion blur under low light) and changes in illumination during on-site field tests.
We therefore implemented fail-safe mechanisms to detect cases of failure (i.e., loss of visual odometry)
and recover the system to the previous state. Recovery after tracking loss involved resuming from
the most recent pose. SLAM performance at the base station was evaluated via minimal mapping to
represent the surroundings of the robot by taking a slice of the point cloud gathered by the RGB-D
camera. We assumed that the system would not have to remain fully autonomous throughout the
challenge, as long as we could maintain communications. Vision-based odometry (ORB-SLAM?2)
with reinitialization proved effective in resuming localization and mapping; however, the precision
was insufficient to earn us additional points, due to the fact that the estimated pose was often
rotated at the time tracking was lost.

LiDAR-based SLAM has produced promising results; however, parameter tuning can be difficult,
and optimal parameters cannot be determined a priori when dealing with unknown sites. Due to
its incremental nature, LiDAR-based SLAM is ill-suited to long narrow walkways and featureless
environments, such as the Beta course in the Urban Circuit. A single erroneous data association could
be catastrophic, as it would render all subsequent measurements useless. Team CoStar introduced
heterogeneous redundant odometry (HeRO) to derive estimates from multiple odometry algorithms
running in parallel (Santamaria-Navarro et al., 2020; Bouman et al., 2020). Resilience is achieved by
ensuring redundancy and initiating recovery. Confidence tests are used to identify common failures,
such as (1) gaps in state updates, (2) rapid jumps, and (3) divergence in the rate of change in the
position/velocity or covariance matrix.

3.4. Overall System Performance

Clearly, localization and mapping accuracy were critical to the overall score. Thus, we quantitatively
evaluated the localization and mapping accuracy during competition runs on the Alpha course in
the Urban Circuit, as shown in Figure 15. We also analyzed the reasons for SLAM failures following
rapid jumps and assessed our recovery strategy.

Localization and mapping accuracy have been evaluated using a variety of metrics (Funabiki
et al., 2020). We used the generalized iterative closest point (ICP) (Segal et al., 2009), which was
previously implemented in the PCL Library (Rusu and Cousins, 2011), to match frame-by-frame the
onboard LiDAR point cloud and the ground truth map provided by DARPA. We used the LiDAR-
based LeGO-LOAM (Shan and Englot, 2018), which performed well in the structured environments
encountered along the Alpha course. Mean odometry and mapping errors were 1.198 and 0.365,
respectively. These results were within the 5-m error range stipulated in the rules. Nonetheless,
while operating on bumpy terrain, our UGV experienced two rapid jumps leading to SLAM failure,
as indicated by the two peaks (at 925 and 954 seconds) in Figure 16. The rapid jumps greatly
increased the mean odometer error (7.904) and mean mapping error (2.513) to beyond the 5-m
limit. Thus, we failed to earn points for detecting and identifying a survivor artifact adjacent to the
end location.

We also performed offline analysis of confidence testing and the recovery process. We followed
the method proposed for HeRO (Santamaria-Navarro et al., 2020; Bouman et al., 2020) to estimate
two LeGO-LOAM algorithms running in parallel, where one was in real-time and one had the sensor
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Table 10. Mean (i) and standard deviation (o) of odometry errors estimated by
LeGO-LOAM before and after rapid jumps (R.J.), and after recovery.

Metrics (a) Before R.J. (b) After R.J. (c) Recovered

Odometry Errors 1.198 7.904 1.924
o 0.948 11.448 1.361
Mapping Errors m 0.365 2.513 0.479
o 0.199 17.104 0.409

- start location
: end location
: manual

: autonomous

Figure 15. Overall performance in the DARPA Subterranean Challenge Urban Circuit Alpha Run at the Satsop
Nuclear Power Plant in ElIma, Washington: (a) Ground truth map with robot trajectory. The UGV autonomously
traversed 277.53 m (green line) in 23 minutes using the proposed learning-based navigation system. The artifacts
and 5-m scoring range are indicated by yellow dots; (b) (c) Artifacts correctly detected by our robot. At the end
of the course, the UGV became stuck on a ledge [red dot in (a) and (d)]. The robot trajectory was plotted by
matching the onboard LiDAR point cloud to the ground truth map provided by DARPA (white points) using the
General Iterative Closet Point (ICP) algorithm for quantitative evaluation.

inputs purposely delayed by 10 seconds. For confidence tests associated with rapid jumps, we set the
threshold of linear velocity at 5 m/s, as shown in Figure 16. We also observed other measurements
(e.g., angular velocity), which did not provide a clear threshold for rapid jumps. The odometry and
mapping errors after recovery were 1.924 and 0.479, respectively. This was sufficient for localization
and mapping accuracy within the 5-m error range. Figure 17 compares the ground truth map (white)
with the mapping estimates.

The rapid jumps revealed the shortcomings of the proposed navigation scheme using low-
dimension inputs for the deep neural network, which were found more generalized from sim-to-real
training. Training here was performed in the cave environment of the Virtual SubT Competition,
which did not include low obstacles or ledges. The performance was reflected in the fact that
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Figure 16. Linear velocities calculated from localization data obtained using LeGO-LOAM. The sudden change
in velocity indicates rapid jumps.

(b)

Figure 17. Comparison of ground truth map (white) and maps generated using the LeGO-LOAM algorithm
(colored): (a) Before rapid jump; (b) After rapid jump; (c) Map recovery based on confidence tests and
corresponding recovery procedure.

the learning algorithm did not consider low obstacles or ledges, ultimately resulting in the UGV
becoming stuck on a ledge [red dot in Figures 15(a) and 15(d)].

We also determined that our learning-based algorithm was too conservative to allow passage
through narrow gates. During the competition, we used the urban-rdpg-fw-v1 model trained to avoid
obstacles and keep moving as far as possible. The robot trajectory in Figure 15(a) shows that the
UGV traversed within 5 m of six artifacts, but earned a point only for the red backpack [Figure 15(c)].
We did not earn any points for artifacts hidden in rooms or for tasks that required the robot to pass
through narrow gates. This was sufficient to convince us of the need for multiple-objective DRL
training and goal navigation models.
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Table 11. Evaluation of goal navigation models passing narrow gates using D4PG (cave-d4pg-goal)
and DDPG (cave-ddpg-goal) models. Gate width (GateW), success rate of passing through (Succ.),
UGV-Jackal turned around and not passing (Trapped), and the number of times a human supervisor
had to intervene to prevent a collision with the gate. The human intervention could be automatically
triggered by an array of tactile sensors around the robot.

Models GateW (cm) Succ. Trapped Intervention
140 1.00 0.00 0.00
110 0.67 0.11 0.22
D4PG (cave-d4pg-goal) 100 0.56 0.33 011
90 0.44 0.33 0.22
140 0.67 0.00 0.33
110 0.56 0.00 0.44
DDPG (cave-ddpg-goal) 100 0.33 0.00 0.67
90 0.22 0.00 0.78

In a separate experiment, we quantitatively evaluated the success rate in passing through gates of
various widths (140-90 cm). We then evaluated two goal navigation models (cave-d4pg-goal model
and cave-ddpg-goal), using a Clearpath Jackal UGV in an indoor corridor. A human supervisor
provided a goal point located 10 m from the UGV with a gate in between. The initial position of
the robot was randomly assigned and nine trials were conducted for each condition. We measured
the number of times the UGV succeeded in passing through the gate (Success), the number of times
the UGV turned around without passing the gate (Trapped), and the number of times a human
supervisor had to intervene to prevent a collision with the gate (Intervention). The results in Table 11
indicate that the success rate decreased with the width of the gate, regardless of the model used
for navigation. The D4PG model outperformed DDPG by enabling the UGV to navigate through
the narrowest gate (90 cm) with a success rate of 0.44. Its success can be attributed to the use of
N-step returns, and extensions upon the DDPG that a distributional updates combined with the
use of multiple distributed workers writing into the same replay buffer (Barth-Maron et al., 2018).
Overall, learning-based multiobjective navigation was unable to match conventional methods in the
piano moving problem (Schwartz and Sharir, 1983). Nonetheless, the learning approach was useful
in some situations in which the map-localize-plan approach failed due to an inability to observe all
geometric relationships in a scene. We refer readers to our work on navigating with mmWave radar
and DRL under adverse environmental conditions (Huang et al., 2021).

4. Deployable Nodes for Localization and Communication
4.1. SBL-UWB Localization

A number of studies (Song et al., 2019; Zhen and Scherer, 2019) have reported on the challenges
of LiDAR-based SLAM in long featureless tunnels, due to geometrically featureless long corridors.
Despite recent efforts to leverage UWB ranging through the use of fusion, most systems require the
predeployment of UWB modules, which is not feasible for SAR missions.

The short baseline (SBL) method is used in the navigation and localization of autonomous
underwater vehicles (AUVs). In SBL, acoustic range sensors on a support vehicle with access to
GPS (e.g., a boat) are used to localize the scout vehicle (AUV), as shown in Figure 18(a). In this
study, we implemented SBL-UWB to obtain the relative location of a single robot, a deployable
node, and/or a heterogeneous team of robots.

We equipped a large Husky robot with LiDAR-based SLAM to function as a support robot to
enable localization of scout robots relative to itself using the onboard UWB module. As demonstrated
in previous studies (Rogers et al., 2020) LiDAR-based SLAM could be robust in most scenarios
except some cases (such as rapid jumps, see Section 3.4), LiDAR-based SLAM is robust in most
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(a) (b) (c)

Figure 18. (a) Short baseline (SBL) is used with acoustics for localizing autonomous underwater vehicle (AUV).
Image courtesy of Liam Paull. (b) SBL is used with UWB measurements to obtain relative location between a
robot and a deployable node. (c) SBL-UWB could be used for a support vehicle (Husky) and a scout vehicle

(Jackal).
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Figure 19. We tested (a) UWB sensor characteristic: range measurements distribution, and (b) the average
errors of the SBL-UWB evaluated using various baseline length (from 0.2 to 1.2 m) and ranges (from 5 to 25
m). The error is caused by angular deviations.

scenarios other than sudden bounces (see Section 3.4). Thus, the resilience of the proposed SBL-
UWB method to environmental variations (e.g., illumination) means that it could be used as a
reference for confidence tests in the assessment of SLAM algorithms.

4.1.1. Sensor Characteristics and Baseline Length
Rather than Wi-Fi or Bluetooth, we selected UWB modules (Pozyx) as range sensors, which use
transmission signals over multiple frequency bands (3.1 to 10.6 GHz) with a large bandwidth spread
(499.2 to 1331.2 MHz). We first evaluated the range measurement distribution in a basement
environment, where 1D LOS ranging was within 40 mm [see Figure 19(a)].

Baseline length largely determines the accuracy of SBL-UWB. Baseline length and measurement
accuracy are constrained by the size of the robot; therefore, we performed an experiment to estimate
the 2D localization errors of SBL-UWB. Four UWB modules with baseline lengths of 0.2-1.2 m were
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Figure 20. Local deployment of six SBL-UWB nodes in a test environment with the ground truth positions in
a map frame designed in accordance with the reference frame defined by DARPA. The nodes were located using
SBL-UWB along the trajectory of the robot, as estimated using LeGO-LOAM in the Circuit event. The average
error in localizing the six nodes was 1.08m.

mounted on a frame. A tag was then mounted on a robot performing SLAM, while moving away
from the frame. Localization errors were measured at a range of 5-25 m with respect to the frame.
Multidimensional scaling was applied to the range estimates and range priors from tags on the
support vehicle in order to estimate the relative position of the UWB tags. Our results revealed
that baseline length was inversely proportional to estimation errors, as shown in Figure 19(b). When
the baseline length exceeded 0.9 m, the error was roughly 10%, proportional to distance. The errors
were caused by angular deviations.

4.1.2. Localization Estimation to Deployable Nodes

Four UWB modules were installed on the support vehicle to estimate the position of the UWB
module installed on the scout vehicle. The UWB modules on the support robot were placed at the
four vertices of a square measuring 0.6 x 0.6 m. The estimated error based on baseline length was
roughly 20%, proportional to distance. Accuracy of this degree may be sufficient to detect large
divergences in results from the SLAM algorithm. It is also possible to execute a homing action back
to a specific deployable node for recalibration. In the current study, we limited our analysis to a 2D
plane; however, this approach could be extended to 3D if more UWB modules were installed.

We then evaluated the SBL-UWB setup on the Husky UGV. The testing environment was a
basement floor, which included several pathways with multiple turns along narrow corridors cluttered
with partitions, tables, chairs, furniture. Six deployable nodes (urban-anchor-brick) were also placed
in the basement environment. The UGVs were initialized in the staging area and localized at the
nodes using SBL-UWB, while navigating through the environment. Figure 20 presents the estimated
position and ground truth position obtained from LiDAR SLAM. The average error of the six nodes
was 1.08 m.

4.1.3. Sound Source Localization (SSL)

The deployable nodes included a speaker source, to be localized by our UGV. Seeed’s ReSpeaker
Core v2.0 with eight-channel ADC is utlized as a six-circular microphone array and two loopbacks.
Three microphone arrays were installed as shown in Figure 21. The captured signals from the
microphone array x were used to find the potential sources. Multiple Signal Classification (MUSIC)
based methods have been suggested (Grondin and Michaud, 2019).
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Figure 21. (a) Sound source localization using three sets of microphone arrays and UWB modules. The settings
were designed to avoid the self-noise in between the sound source and the robot. (b) We found the SSL accuracy
7.78° did not meet our requirement for landmark loop closure, but we found it useful as a homing mechanism
for a robot to return to a node. The UGV was tasked with approaching the goal at each one of sides without
colliding using the localization system for guidance.

The implementation of SSL (Bai et al., 2013) was achieved using the MUSIC-based algorithm
in the frequency-domain with thetime-harmonic dependence, exp(jwt), where j = /=1, w denoted
the angular frequency, and ¢ denoted the time variable. We considered N point sources and M
sensors. For a wide-band audio signal in the audible range, the pressure field generated by a point
source was expressed as

JkTmn
p(rm) = %,m: 1,....M;n=1,...,N, (1)
rmn
where 7y = ||[tm — Ta|| With ry, and r, being the position vectors of the m® sensor and the n'*

source. The symbol s, (w) denotes the Fourier transform of the n* source amplitude and k = w/c
being the wave number with ¢ being the speed of sound. The following frequency-domain array
signal model can be established:

x=Gs+n, (2)

where x = [p(r1)---p(rm)]” € CM is the array data vector, s = [s1(w)--- sy (w)]” € CV is the
source amplitude vector, [G], = el *rmn/r . m =1, M;n=1,.,N is the steering matrix
based on the point-source model, and n is the uncorrelated additive noise vector. The MUSIC
algorithm relies on the separation of two orthogonal subspaces, the signal subspace and the noise
subspace, constructed using the eigenvalue decomposition (Schmidt, 1986) of the spatial correlation
matrix:

M
Ry = UAUY =) " Nee;”, (3)
i=1
where U is a unitary matrix comprised of orthonormal eigenvectors e;s, A is a diagonal matrix
with eigenvalues \; > --- > Aj; as its diagonal entries, the superscript “H” denotes Hermitian
transpose. IV indicates the number of independent sources determined by the effective rank of the
spatial correlation matrix. Note that span {e1,--- ,en} is referred to as the “signal subspace” and
span{eny1,- - ,en} is referred to as the “noise subspace” In light of the orthogonality of these
two subspaces, a projection matrix onto the noise subspace can be constructed as follows:
M
Py=> e =1-U,U", (4)
i=1
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where I is an identity matrix and U, = [e1,- - ,en]. The sources can be located by finding the
peaks in the MUSIC pseudospectrum:
1
S = —. 5
music(r) all (r)Pya(r) (5)

The vector, located at a(r) represents the steering vector corresponding to point source, r. Note
that the steering vector is based on the point source model, which necessitates a grid search.

The MUSIC-based algorithm was integrated within the UGV via microphone arrays. We disre-
garded elevation angle 6 in order to facilitate real-time computation, and the direction of arrival
(DOA) estimates were obtained using azimuth angle resolution of only 5° (§ = 0°). The precision
of the sound localization algorithm was evaluated in an indoor rectangular area measuring 7.4 m x
7.6 m. With one sound source placed by a distance of 1 to 5 m at the azimuth angles, 0° or 90° by
turns, the average errors in estimating the angle of the sound source was 7.78°. We neglected the
elevation angle 6 for real-time computation considerations, and the DOA estimation was performed
only on the resolution of azimuth angle by 5°. Here, SSL accuracy did not meet our requirement
for landmark loop closure, but we found it useful as a homing mechanism for a robot to return
to a node. We conducted an evaluation of the robot tasked with turning into the path where the
node was located. The rate of success in recognizing the correct direction was 0.96 (52/54). Both
of the errors involved nodes on the left side of the T junction, which may be due to some other
interferences being detected in the lab environments.

4.2. Subterranean Radio Propagation Analysis

4.2.1. Goals and Metrics

Communications must be maintained at all times among heterogeneous robots, anchor nodes, and
human supervisors. Without a clear understanding of radio propagation characteristics in SubT
environments, there is no way to determine the optimal deployment strategy, and particularly in
locations with a complex geometric structure. Thus, we collected radio propagation data from XBee
and UWB modules in various underground environments, including a long artificial tunnel, a natural
sea cave, and a baseline indoor corridor. Our objective was to provide quantitative measures for use
in making decisions pertaining to node deployment:

o Tuask-dependent thresholding: The established RSSI thresholds to designate two ranges describ-
ing situations as “detectable (Det.)” or “stable (Sta.)”. “Stable” indicates that transmission
data can be decoded accurately to guarantee an XBee transmission rate of 255 byte per second
and with minimal UWB localization error. The values of RSSI are dependent on the device of
the company and without unit. The RSSI of detectable and stable ranges of XBee are from —90
to —40 and from —70 to —40, respectively. Besides, the RSSI of the detectable and stable ranges
of UWB are from —110 to —80 and from —90 to —80, respectively. Samples of normalized RSSI
measured in the Shimen Tunnel were plotted in Figure 22. Nonetheless, measurements within
the detectable range are susceptible to frame loss and/or missing data and prone to outlier
UWB range estimates. Coordinating the sharing of maps among robots and the base station
requires stable ranges. Transmit robot poses and artifact reports within detectable range are
required with multiple attempts.

e Coverage: The RSSI values of XBee and UWB modules were collected by a UGV traversing
various passages. The locations of our urban-node-bricks nodes were recorded at the time
of deployment, whereupon the RSSI between the robot and each node was recorded. We then
analyzed the RSSI gradients to estimate the coverage of each node along the recorded trajectory.

e LOS vs. NLOS: We examined the RSSI gradients of nodes placed at specified distances from a
90 degree turn, including the immediate RSSI drop at the intersection (G ) and the average
RSSI gradients G after the turn. NLOS propagation while making a turn could potentially
cause a high Giyrp in narrow tunnels.
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Figure 22. Signal strength measurements over various distances in Shimen Tunnel under LOS conditions. The
radio signal strength indexes (RSSI) of XBee and UWB were normalized to a scale of 0 to 100.
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Figure 23. Shimen Tunnel, an artificial structure under the Shimen Reservoir, was built with regular corridor
geometry. There were 13 nodes deployed, shown as red triangles. Average RSSI gradients were calculated over
the segments of the main tunnel (L1 to L3) and the branches (S1 to S4).

4.2.2. Shimen Tunnel
Field tests were conducted in artificial tunnels beneath the Shimen Reservoir measuring roughly 8
km on four levels. The tunnels are used for regular public safety inspections. This network includes
straight tunnels and narrow constrained passages, and the four levels are connected by stairs. For
the sake of safety, data collection was conducted only in the main branch of the first level, which
is equipped with 4G communication infrastructure, as shown in Figure 23. The cross section of
corridors was consistent along the length of the passages; however, a notable lack of features provided
challenges for mapping using existing SLAM algorithms. Technical drawings of the construction site
were used as a ground truth map.

XBee Coverage. As shown in Table 12, the average LOS ranges of XBee were similar to the
baseline indoor corridor. The standard deviation of the RSSI gradient in Shimen Tunnel was 0.21,
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Table 12. Summary of coverage and normalized RSSI gradients (G, m™!) of UWB and XBee modules under
artificial tunnel, natural sea cave, and a baseline indoor corridor environments (Engineering Building 5 in NYCU).
LOS: line of sight; NLOS: non line of sight; Cov.: coverage; Det.: detectable RSSI range; Sta.: stable RSSI range.
Gturn refers to the larger degradation of the RSSI while the UGV turned into a branch and the communication
became NLOS. RSSI gradients were normalized to a scale of 0 to 100, based on detectable RSSI range.

LOS NLOS
Comm. Module Environment Det. Cov.(m) Sta. Cov.(m) Avg.G. Std.G. G, Avg. G.
Shimen Tunnel 121.95 73.17 0.82 0.21 8 7.93
XBee BH Cave 42.92 25.75 2.33 0.70 11.04 9.68
Indoor Corridor 125 75 0.80 0.14 12.86 4.10
Shimen Tunnel 27.47 9.07 3.64 1.61 20 -
UwB BH Cave 21.01 6.93 4.76 1.38 335 -
Indoor Corridor 39.21 12.94 2.55 0.59 15.67 -

which was lower than in the BH Cave (0.70), indicating that similar scene geometries produced
similar radio propagation characteristics. Taken together, these results indicate that in unknown
environments, it is feasible to measure the coverage around entrances as long as the geometry is
consistent. RSSI gradients and coverage can then be used to build a mesh network using multiple
deployable nodes.

XBee NLOS.We determined that turns significantly degrade RSSI (Gtyrrn) in NLOS communi-
cation systems, where Gy, and Avg.G. were around 8. The reported NLOS RSSI gradient in
Shimen Tunnel (7.93) exceeded that in the general indoor corridor (4.10), which may be caused by
the narrower corridor geometry. We found that the signals were still able to propagate through the
NLOS passage after the turn, which suggests that nodes do not necessarily have to be placed at all
intersections. Rather, the decision of whether to deploy a node should be based on whether NLOS
signals fall off faster than LOS signals after the turn.

UWB. We observed higher LOS and NLOS RSSI gradients, indicating shorter coverage. Specif-
ically, the UWB appeared not to propagate in NLOS situations, due to a large Giyrn. We also
observed that UWB was not usable for localization outside its stable range (i.e., —110 to —90
dBm).

4.2.3. BH Cave

XBee Coverage. Unlike the Shimen Tunnel, the geometry of BH Cave is highly irregular, as shown 24.
As a result, the detectable coverage and stable coverage were both shorter than in the Indoor
Corridor and Shimen Tunnel. We also observed larger standard deviation in RSSI gradients (0.70),
indicating that radio propagation varied considerably among the various areas within BH Cave,
which greatly hindered modeling.

XBee NLOS. BH Cave includes several narrow twisting branches, which produce far more NLOS
situations than in the other two environments. The G4y, was 11.04, higher than in Shimen Tunnel.
Average RSSI gradients of NLOS (9.68) were higher than in the other two locations.

UWB. In the cave, the average detectable coverage was 21.01 m and the average stable coverage
was 6.93 m. Both were shorter than the other two environments. When using UWB for localization, it
is crucial that the robot remain within the range of stable coverage. As in the other two environments,
NLOS communication was not available, due to a large Gyy.,. Thus, nodes should be placed at all
intersections to maintain the link.

4.3. Coordinating Vehicles, Nodes, and Human Supervisors

The infrastructure used to coordinate vehicles, nodes, and human supervisors was based on
our previous work in Duckietown (Paull et al., 2017), in which intervehicle communication was
decentralized and perception based. In this paper, we created an ROS core for each robot, and
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Figure 24. BH sea cave featuring irregular walls and small tapering caves. The deployed nodes are marked as red
triangles. The robot followed the main branch (labeled L), explored the twig segments (labeled S), and returned
to the base station.
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Figure 25. Coordination between vehicles and human supervisor via deployable nodes. Each vehicle broadcast
robot states, artifacts found, and map (point cloud). The human supervisor interactively provided subgoals via
GUI, and selecting locations of dropping deployable nodes. Although all robots could receive the packets from
other robots, the high-level decisions were currently only made by the human supervisor.

communication was handled by XBee. Figure 25 illustrates the scheme used to coordinate multiple
robots and human supervisors with each vehicle decentralized. Coordination was performed by
a human supervisor (at a base station) using a graphic user interface to assign subgoal points
pertaining to each vehicle. Mapping results sent back from multiple robots were used by the human
supervisor to assign subgoals in unexplored regions, whereupon the DRL goal navigation model was
used to perform autonomous navigation. The human supervisor was also responsible for selecting
locations at which to drop deployable nodes. During exercises, each vehicle used several 250 byte
packages to broadcast (at intervals of one second) information performing to its operating status,
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the artifacts it found, and a corresponding map. All of the robots received updates about the status
of other robots; however, all decisions were made by human supervisors.

5. Discussion
5.1. Limitations and Lessons Learned

Our experience in this project taught us a number of lessons pertaining to the mobility of Duckiefloat
blimps, the control of Duckiefloat blimps in simulations, the use of mmWave sensors for localization of
perception, sim-to-real deep reinforcement learning, communication modules, and radio propagation.
It appears that blimps are well-suited to tunnel environments with a regular corridor geometry, due
to their excellent energy efficiency, long flight time, and high tolerance for collisions. However, they
are difficult to maneuver in tight spaces and susceptible to strong air currents, which prompted us
to add tail motors for heading control and employ more powerful brushless motors.

An effective control system depends on an accurate model of blimp dynamics. Our attempt
at establishing a 6-degrees of freedom nonlinear mathematical model ran into difficulties due to
imprecision in parameter estimates, which prevented smooth operations in the virtual environment.
We also had to accept the fact that without an extensive background in aerodynamics and fluid
mechanics, we would be unable to derive the precise data required for this type of modeling.

Our use of mmWave radar for collision avoidance proved highly robust to smoke and other
obscurants in SubT environments (Huang et al., 2021). Single-chip mmWave radar devices are
light enough and energy efficient enough for aerial vehicles and provide sufficient FOV for effective
navigation. Our experience in the Urban Circuit convinced us that heterogeneous robots can learn
navigation via transfer learning based on mmWave radar data. Nonetheless, further research will be
required to determine whether mmWave radar is also applicable to SLAM.

LIDAR-based SLAM proved effective in most situations (as long as confidence tests were
performed); however, vision-based SLAM was susceptible to variations in illumination. The efficacy
of SBL-UWB in determining the relative position of robots with respect to one another means
that it could be used in cooperative multirobot missions. It should also be possible to compare a
variety of SLAM algorithms using various parameter sets to optimize SLAM for specific subterranean
environments. The best combination (i.e., with the highest confidence) could then be used to ensure
failure-free SLAM in subsequent areas. The use of semantic segmentation in the search for artifacts
does not pose difficulties as long as we know where to look. However, implementing this type of
system over a wide FOV may require multiple cameras and heavy computational resources. In
this study, we established benchmarks for state-of-the-art semantic segmentation algorithms [i.e.
Mask-RCNN (He et al., 2018) and Yolact (Bolya et al., 2019)] with DARPA-released logs. Besides
developing more robust algorithms, a possible future research direction is having the robots equipped
with a 360 degrees, 3D visual coverage camera system. The simulation environments provided by
the virtual track facilitated our development of a navigation system based on deep reinforcement
learning. Our current DRL scheme enables collision avoidance with low-level control without the
need for an external high-level planner. We believe that DRL is promising for real-world use, alone
or in conjunction with frontier search algorithms.

Nodes must be deployed wisely; therefore, we suggest further analysis of radio propagation in
SubT environments and the sharing of datasets as a practical baseline for further developments.
Our results demonstrated the importance of finding testing sites that are similar to the competition
environment in order to gain insights and avoid potential pitfalls. It is also important to establish
plans and schedules for the development and revision of hardware to ensure that subsequent software
development is not delayed. Finally, it should be noted that a number of our project milestones
were too ambitious for the tight schedule imposed by the impending competition. The Cave Circuit
was canceled due to the COVID-19 outbreak; however, we still learned a great deal about long-
term preparation and development, as evidenced by our organization of subsystems (perception,
autonomy, SLAM, communication, and infrastructure). We also learned the importance of focusing
on the fact that the metric of success was the number of points scored.
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5.2. Reflection on the Competition

There was considerable debate regarding whether or not a system team should also participate in
virtual challenges. We appreciate the efforts of the organizers in providing simulation platforms to
facilitate the developments of sim-to-real deep reinforcement learning algorithms. Virtual challenges
were a viable solution during the COVID-19 outbreak; however, we considered our long-term research
goal to deploy actual robots in the field and therefore opted not to participate in the virtual track.
Our strategy in the Tunnel and Urban challenges were based on scoring protocols. The fact that we
did not participate in the STIX event meant that we had to overcome a steep learning curve in dealing
with the logistics for the Tunnel Circuit. Even after working hard to overcome those issues, the Urban
Circuit was an arduous challenge. We look toward the final event with some trepidation, due to the
fact that it will include all three environments (tunnel, urban, and cave). We were impressed by the
definition and execution of rules by DARPA. Considering that the competition sites are unknown
to participants prior to the events, it should be difficult to figure out how much information to
disclose to teams. We were particularly concerned about the width of passages at the Urban Circuit
site. We were made aware of the fact that the width of passages would vary considerably from large
open areas to narrow constrained doorways. To quote from the information package: “For the Urban
Circuit, it is expected that up to 50% of the competition course could be inaccessible to systems
that cannot traverse these passages.” During the competition run however, we ran into trouble with
a narrow gate next to the starting gate, where high airflow greatly affected the capabilities of the
robots. Clearly, the accessibility of the course did not match the description. We would appreciate
it if DARPA could provide accurate site descriptions pertaining to corridor geometry and airflow.

5.3. Future plans

Subsequent research will focus on advancing real-world reinforcement learning (RWRL). Current
navigation policies trained using DRL algorithms proved effective in navigating the UGV under
our testing scenarios; however, further work will be required to extend them to a wider range
of environments. We will also continue our work on transfer learning to train policies for blimp
simulation. Further advances in RWRL impose a number of challenges, including reward unspecified
(Fu et al., 2018), multiobjective, trained from (Fu et al., 2020), partially observable tasks (Dulac-
Arnold et al., 2019).We are also planning to include communication-aware, i.e., RSSI inputs to DRL
formulation, and develop policies for the dispersal of nodes with rewards for maximizing coverage.

We will also begin work on a high-level planner using PyRobot (Murali et al., 2019) for the
development of systems that place greater emphasis on task-level autonomy. For example, the human
supervisor should be able to employ a state-machine structure in the assignment of tasks, as follows:
“Robot 1, move to the next intersection, drop a deployable node, switch to mmWave mode for
smoke-filled environment, and return to the node.” The robot should be given the ability to assess
situations and make reasonable decisions pertaining to the next course of action.

We are currently involved in the development of a modular sensor tower, autonomous-operations
box, and battery box, to facilitate the deployment of modules to heterogeneous robots. We hope
that these developments will be available for future projects. It was a privilege to participate in
the DARPA SubT Challenge in developing technologies capable of reaching dangerous places where
humans cannot go. We have begun making connections and acquired research funds to work on
systems for the inspection of public facilities, communications systems for nuclear research facilities,
and robotic systems to assist frontline medical staff in isolation wards.

6. Conclusion

The aim of research into search and rescue robots is to develop systems capable of enhancing
situational awareness without exposing humans to danger. The DARPA Subterranean (SubT)
Challenge was meant to accelerate research in this area. The first two phases of the challenge
were held in a mine tunnel and an abandoned nuclear power plant. Teams were tasked with locating
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specific artifacts, while dealing with difficulties typical of subterranean environments, including
austere navigation, degraded sensing, severed communications, and rough terrain. The problems
can be broken down to those of autonomy, mobility, perception, and communication. The system
we developed for these events was a heterogeneous team of robots, including a low-cost autonomous
blimp with extended flight capability, a platform-agnostic mmWave sensor tower, learning-based
algorithms for navigation through an obscured atmosphere, and deployable nodes for localization
and communication.

The autonomous blimp, Duckiefloat, was meant to overcome extreme ground-level mobility issues.
We developed various hardware configurations, including the envelope, rotors, and frame designs.
The development of Duckiefloat was in using rolling bases and gradually solved the unique challenges
in SubT environments. Preliminary testing prompted us to replace the Styrofoam airframe with
carbon fiber struts. The final version of Duckiefloat was able to travel through narrow passages
(85 cm in width). Adjustments were made to the drive system to enhance steadiness and hovering
ability in the presence of airflow. Mobility tests were conducted in controlled maze environments as
well as real-world locations, including an abandoned bunker, railway tunnels, indoor corridors, and
a natural sea cave. Our results indicate that blimps do not provide a general solution; however, they
could be invaluable in some scenarios. We also developed an autonomous UGV system based on a
Husky with a proprietary sensor tower and deployable nodes for communication.

The ability to function under degraded sensing scenarios is crucial to the success of vehicles
navigating autonomously through SubT environments. We developed a platform-agnostic mmWave
sensor tower in conjunction with learning-based algorithms to achieve this end. Our navigation agent
was based on DRL aimed at navigating to a designated goal point using point clouds as the input.
Our DRL scheme also included reward functions and a network architecture. The DRL agent trained
in the Gazebo virtual-subt-cave environment integrated with the OpenAl Gym API was able to
navigate effectively under normal conditions. mmWave sensors were used to extend functionality to
situations where cameras would be unable to function effectively, such as environments filled with
smoke. We adopted cross-modal contrastive learning for representation (CM-CLR) to maximize
agreement between mmWave data and LiDAR data. Our end-to-end DRL policy proved highly
effective in navigating the robot through a smoke-filled maze achieving performance on par with
generative reconstruction methods. The light weight of mmWave sensors also made them ideally for
our dirigible. SLAM and deep learning-based semantic segmentation were used to locate artifacts. In
a comparison of state-of-the-art semantic segmentation algorithms (MaskRCNN, Yolact and FCN),
the MaskRCNN model was the most effective for large artifacts like survivors, backpack, and vent,
whereas the Yolact model was overly sensitive to noise in SubT environments. Sudden bounces by
the UGV had a profound effect on SLAM performance. Analysis of sudden bounces based on the
linear velocity of the UGV provided a threshold for confidence tests to be used in recovering the
map after such incidents.

Communication is the key to cooperation among robots. We developed deployable nodes to
establish XBee and UWB mesh networks. In three representative environments, we measured the
RSSI of the two systems from a UGV as it traversed the passages. We were able to establish RSSI
thresholds to designate two ranges describing situations as “detectable” or “stable”. We also analyzed
the RSSI gradient in line-of-sight and none-line-of-sight situations to elucidate the optimal dispersal
of communication nodes. In a cave used for testing, the robots shared the maps they discovered and
their current poses with each other and with the human supervisor. Note that the proposed nodes
can also be used as anchors for localization. Finally, we developed a system for the localization of
nodes and artifacts based on audible signals.

We hope that our research will inspire further work in subterranean robotics.
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