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Abstract— Duckiepond is an education and research develop-
ment environment that includes software systems, educational
materials, and of a fleet of autonomous surface vehicles Duck-
ieboat. Duckieboats are designed to be easily reproducible with
parts from a 3D printer and other commercially available
parts, with flexible software that leverages several open source
packages. The Duckiepond environment is modeled after Duck-
ietown and AI Driving Olympics environments: Duckieboats
rely only on one monocular camera, IMU, and GPS, and
perform all ML processing using onboard embedded computers.
Duckiepond coordinates commonly used middlewares (ROS and
MOOS) and containerized software packages in Docker, making
it easy to deploy. The combination of learning-based methods
together with classic methods enables important maritime mis-
sions: track and trail, navigation, and coordinate among Duck-
ieboats to avoid collisions. Duckieboats have been operating in
a man-made lake, reservoir and river environments. All soft-
ware, hardware, and educational materials are openly available
(https://robotx-nctu.github.io/duckiepond), with
the goal of supporting research and education communities
across related domains.

I. INTRODUCTION

According to the US Coast Guard 4,291 accidents were
reported in 2017 among 11,961,568 registered recreational
vessels. Those accidents involved 658 deaths, 2,629 injuries
and approximately 46 million US dollars of damage to
property, and over 1,500 of reported accidents were caused
by collisions to other vessels or fixed objects [1]. Self-
driving vehicles have become one of the most influential
applications, either on the road or on maritime domains such
as harbor security. Developing such a technology may have
the potential to reduce accidents due to operator inattention,
inexperience, violation of navigation rules, or lack of a proper
lookout - the major factors causing the reported accidents.
A testbed is very much needed to make progress for the
safety considerations, and is involving how to deploy the
state-of-the-art technologies in a fleet of real robots to avoid
collisions.

A. Development Environments for Autonomy Education and
Research

Duckiepond is inspired by the open and low-cost platform
Duckietown [2], [3]. The recent success of the Duckietown
platform was one of the miniaturized testbed to develop
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Fig. 1: Duckiepond: an open education development environ-
ment for a fleet of autonomous maritime vehicles operating
in outdoor fields. The development environment includes:
the hardware Duckieboat, software systems, and education
materials for autonomy education. Duckieboats have been
tested in a reservoir, artificial lake, and river environments.

autonomy education and research [2], [4]. The inexpensive
platform includes a team of vehicles built upon ROS, and
each vehicle includes only an onboard monocular camera and
an embedded computer. A miniaturized city (Duckietown)
with roads, signage, and obstacles is designed to tackle the
problems of autonomous driving. The Duckietown platform
started to adopt Docker and deep learning, such as Convolu-
tion Neural Network (CNN) imitation learning and deep
reinforcement learning for lane following tasks, and was
used in the competition of the AI Driving Olympics (AI-
DO) [3], [5]. The hands-on materials have been adopted at
over 10 universities globally. The materials include solutions
for lane following, vehicle following, intersection coordination
tasks. The materials include hardware assembly, softwares
(Docker, ROS, Python, OpenCV), state estimation (Bayes’
filter), computer vision and deep learning, shown in Table I.

Nevertheless, autonomous maritime missions have different
challenges from ground vehicles, such as vehicle controls
under unpredictable currents and winds, no road lane, and
unable to apply stopping distance like cars while braking.
Therefore, we wish to adapt some of the principles for the
domains of the autonomous surface vehicles, and establishing
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TABLE I: Automony Education Materials in Duckietown and
Duckiepond.

Modules Duckietown [2], [3] Duckiepond
Tasks Lane Following Waypoint Navigation (M)

Vehicle Following Track & Trail
Intersection Coordination Obstacle Avoidance (M)

Hardware Duckiebot Duckieboat
Camera Camera, GPS, & IMU
RPi3 + NCS RPi3 + Jetson TX2/Nano

Software Docker, ROS, Docker, ROS & MOOS,
TF/PyTorch, TF/PyTorch,
OpenAI Gym & Pyglet [9] Gazebo & VRX

State Est. Bayes’ Filter EKF
CV & Edge/Color Detection SSD [10]
Learning Ground Projection

Imitation Learning (Sim/Real) Imitation Learning (Sim)
Deep RL [11]

(M) represents existing behaviors in MOOS-IvP.

a safe testbed called Duckiepond. Our goal is to provide the
Duckiepond development environment as a further option for
autonomy education and research for maritime tasks, such as
waypoint navigation, track and trail, and obstacle avoidance.

For the maritime autonomy education, MIT 2.680 [6] covers
software and algorithms for autonomy involving decision
making. In particular the MOOS-IvP [7] autonomy software
infrastructure is introduced for developing integrated sensing,
modeling and control solutions. The simulation environments
is complemented be a field testbed with small autonomous
surface craft and underwater vehicles operated on the Charles
River. There are also educational certificate programs [8]
for unmanned maritime vehicles that provide students with
the knowledge operating of a variety of autonomous marine
survey vehicles. The program aims at covering the decision
making and mission planning based on the environment
factors gathered from sensor data.

B. Robotic Software and Middlewares

Mission Oriented Operating Suite (MOOS) [12] is a
commonly used middleware for marine robotics, and MOOS-
IvP (Interval Programming) [7] is an open source project for
multi-objective optimization between competing behaviors. It
is well-suited in the fields of unmanned surface vehicle and
underwater acoustics, and has profound influence in marine
robotics for years.

Recently the rise of Robot Operation System (ROS) [13]
facilitates the development across academia, industry, and
government organizations. Since there are majority of users
and thousands of modules have been developed, ROS has
become one of the most commonly-used middleware for
robotics. Lots of robots such as PR2, Atlas, UR5, and Turtlebot
use it as their software framework. There have been other
middlewares developed, such as LCM and others; we refer
the readers to [14].

Gazebo, a 3D simulation for general robots applications,
is integrated and available to ROS users. Simulations in
Gazebo have also been widely adopted in robotics education
and competitions [15]–[17]. In particular the Virtual RobotX
(VRX, https://bitbucket.org/osrf/vrx/src/default/) includes rich
sensors, objects, and robot models, and is an open source
to support developments and competitions of autonomous
surface vehicles. Some tutorials are available including

the qualification task in the RobotX competition [18], and
a baseline solution using given GPS locations and PID
controllers.

Our goal is to support two of the commonly used middle-
wares: ROS and MOOS (mission-oriented operating system
IvP helm) [7]. In particular, we consider two major reasons to
contain both middlewares. 1) The development environment
of the education efforts should be inclusive and supporting
wider communities. 2) We wish Duckiepond to well-support
international competition VRX, which only provides Gazebo
and ROS protocols. Although MOOS-ROS Bridge [19] has
been develop to communicate these two robotics middleware,
the compatibility issues remain due to various software
dependencies in the fast evolving Ubuntu and ROS distribu-
tions. Therefore, we propose a flexible software architecture
to support multiple middlewares (currently only ROS and
MOOS), and is able to deploy algorithms to simulation and
real robots.

C. Developments of ASV and USV

Recent work for autonomous surface vehicles (ASV) or
unmanned surface vehicles (USV) have been proposed in
various applications. The OASIS platform [20] is designed
to enable ocean surface study with solar power for long
term operation. The Roboat platform [21]–[23] designs
latching system for efficiently assemble/disassemble float-
ing structures to quickly form floating infrastructure from
multiple-vessel reconfigurable surface platform. [24] develop
multiple networked mid-sized autonomous surface vehicle
(ASV) for environmental monitoring. Some are extended from
commercial crafts such as fishing trawler [25] and kayak [26]
by mounting sensors, computing units, and propulsions.
Depending on the application scenarios, the buoyance, size,
sensor choices, and strength of mechanical structure of the
vehicles are designed [27]–[35], including: kayak-style [26],
[29], speedboat [36], catamaran [27], [31], [34], [35], small
waterplane twin hull (SWATH) [30], [32]. There are also
maritime robotics competitions to design various ASVs, such
as the RoboBoat [37]. We refer the reader to see surveys
in [38]–[42]

As summerized in Table II the designs of Duckieboat
is after the commercially available platform Heron [43],
which is a surface vehicle used for environmental monitoring
(water sampling) and other tasks. Although the commercial
USV have been developed, the high cost of these systems
(usually several thousand dollars) has been a challenge to
be widely adopted. [44] developed a low-cost platform
Cooperative Robotic Watercraft (CRW), which took advantage
of all sensors on a commercial smartphone, and only cost
under $800. Nevertheless, the size is relatively small and not
easy to reconfigure the sensors, computation, and network
architecture.

D. Contributions

This work aims to develop an open education and research
development environment for a fleet of ASV with essential
functionalities of autonomous navigation in real-world mar-
itime environments. The design principles include:
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(a) Duckieboat (b) Rear view of Duckieboat. (c) Embedded computers and battery.
Fig. 2: Duckieboat designs. (a) Duckieboat includes a camera, IMU, and GPS sensors; (b) differintial drive propulsion; (c)
the computing units include a Raspberry Pi3, neural compute stick, and NVidia Jetson TX2 inside a waterproof container.

TABLE II: Autonomous/Unmanned Surface Vehicles Compar-
isons.

Vehicles Duckieboat Heron [43] CRW [44]
Dimension (m) 1.5×0.7×0.5 1.35×0.98×0.32 0.7×0.4×0.4
Weight (kg) 20 28 5.9
Payload (kg) 20 10 1
Propulsion 2 to 4 motors 2 motors 1 motor
Speed (m/s) 1.8 to 3 1.7 2.78
Power 10.8Ah Li-ion 29 Ah NiMh 10 Ah NiMh
Cost (USD) 1,600 to 2,800 >10,000 Approx. 800

• Open Development Environment. The Duckiboat design
will be open source in hardware and software, and we
wish the developed functionalities and research could be
reproducible. Currently there are 4 universities (National
Chiao Tung University, National Taiwan University,
Seoul National University, and MIT) have adopted
Duckiepond.

• Flexible in Software and Middlewares. With the prin-
ciples of containerization (Docker), we designed and
built an autonomous unmanned marine system with
the software that is compatible for two commonly-used
middlewares: ROS and MOOS. Enable both middlewares
allow to develop under different middlewares and include
establish work from wider communities, and is able
to deploy on real-world and simulation environments,
in particular the VRX. The flexible framework allows
further integrations of other middlewares, such as LCM
and ROS2.

• Educational Materials and Benchmark. We provide
step by step tutorials include basic knowledge about
autonomous surface vehicles and introduction to deep
learning image processing algorithms. In the experiments
we demonstrate and benchmark the performance of track
and trail task that the learning-based algorithms from
vision together with classic approaches via GPS.

All software, hardware, and education materials are
openly available at https://robotx-nctu.github.
io/duckiepond.

II. THE DUCKIEBOAT

The Duckieboat is designed to support a fleet of ho-
mogeneous maritime vehicles. We consider the proposed

Duckieboat (details in II) is capable of carrying out way-
point navigation, track and trail, and obstacle avoidance.
Nevertheless, building such an autonomous unmanned marine
platform for outdoor fields is challenging in many aspects. The
hardware design considerations should include waterproofing,
compact electronics, as well as a cooling system to handle
a variety of weather conditions including heavy rain, strong
winds and blistering sun. Due to the resource constrained of
power and computation onboard, realtime algorithms should
be adapted to support power-hungry, computation-intensive
deep neural networks for overall performance. The design
considerations should also include easily reproducible parts,
such as from a 3D printer and other commercially available
ones, and ideally low-cost to be widely adopted.

Table III.

TABLE III: Duckieboat is designed for low-cost.
Subsystem Item Cost
Computation Jetson TX2, RPi 3B, & Arduino $650
Sensing Camera, GPS & IMU $90
Power Battery (4 hours operation) $105

Communication 2 routers & 2 antennas (Wifi: 100m; LoRa:
1km) $115

Propulsion 2 motors & 2 drivers $430

Backbone Aluminum extrusion & lasercut acrylic
board $1,140

Safety E-stop, fuse & relay $70

Misc.
Cables, SD card, screws, nuts, insulated
terminals, styrofoam ski, & waterproof
connector

$200

Total $2,800
We expect reduce the cost to 1,600 by replacing Jetson TX2 ($599) with
Jetson Nano ($99), re-designing the backbone, and other minor improvements.
Prices rounded to the closest $5. Exact items are available at the website.

A. Sensors

The Duckieboat is designed as a low-cost autonomous
surface vehicle with a camera, GPS and an IMU. The GPS
antenna is set on the top plate to avoid self-occlusion and
the IMU in the waterproof box. By fusing the heading data
from the IMU and position data from the GPS, we obtain
rough navigation information, around 1 to 4 meters precision
error depending on the environments. Duckieboat uses a
Raspberry Pi Camera for gaining local/short range (within
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10 meters) information, in order to enable object tracking or
avoid collision (see Fig. 2a).

B. Waterproof

The Duckieboat uses a watertight box (see Fig. 2a) with
a waterproof connector to protect electronics from limited
dust ingress and from water, except the camera outside the
waterproof container. The GPS, and antenna are waterproof
as well. Our design aims at IP56, and allows a Duckieboat
to work in several maritime environments, such as lakes and
rivers.

C. Propulsions

The Duckieboat uses two brushless DC motors in a
differential drive configuration (see Fig. 2b). It could be also
reconfigured using 4 motors for omnidirectional. Brushless
motors are the most commonly used motor for marine
robotics because of their high torque, small size, and its low
electrical noise. The motors are mounted under the floating
ski to provide a small radius of curvature (approximately
0.75 meter) while rotating. The Duckieboat max speed is
about 1.8m/s come from two thrusters (from the SeaDrone
https://seadronepro.com/accessories/thruster) or faster from
the BlueRobotics T200 thrusters.

D. Computing Units

We use a Raspberry Pi3 embedded computer for processing
GPS and IMU signals and controls, and to a Jetson TX2/Nano
GPU for vision-based computing. Several deep learning
algorithms have been tested such as the single shot multi-
box detector (SSD) [10] and the MobileNet [45]. The Jetson
TX2 is connected to Raspberry Pi3 via ethernet router. The
previous version included a Neural Computer Stick (NCS)
connected to the Raspberry Pi3. The NCS is a neural network
hardware accelerator with USB interface designed to run
the prediction/inference of deep learning algorithms. It is
compatible with Caffe or Tensorflow by converting deep
learning models to graph files. The Jetson TX2/Nano provide
more flexibilities than the solution of NCS, including model
size, specific framework, memory, and computing time.

The Duckieboat system is built on Ubuntu 16.04 and ROS
Kinetic as host, and packaging software into standardized
units in Docker containers [46] for development (laptop) and
deployment (NVIDIA TX2, and Raspberry Pi3). Such settings
ensure the software integration of required dependent libraries,
machine learning tools, and the robot hardware. Based on the
underlying system, we could take advantage of the packages
such as Caffe, Tensorflow (TF), PyTorch to achieve learning-
based capabilities.

E. Communications

The Wifi (2.4G) antenna solution provides up to 100 meters
in wireless communication range, and therefore the testing
environment is set to approximate 80m×80m away from the
shoreside. The shoreside station which includes a computation
device, a joystick, a router, and an antenna. The shoreside
station serves as a master device and connects to the clients
(Duckieboats). The Duckieboat has its antenna wired to an
onboard client router which can communicate to the shoreside

Fig. 3: Duckiepond Architecture.

router (master). It is possible to use the LoRa communication
to extend the communication range to 1 kilometer with low
bandwidth, shown in Fig. 3.

III. MARITIME NAVIGATION TASKS IN DUCKIEPOND

Duckiepond includes maritime navigation tasks: waypoint
navigation, track and trail, and obstacle avoidance. We choose
to use track and trail to demonstrate the capabilities of classic
and vision-based learning approaches. The lead vehicle carried
out waypoint navigation via given GPS positions, and obstacle
avoidance to avoid known static obstacles such as shoreside
or other floating structure in the testing environments. The
follower vehicle perform track and trail and keep a assigned
distance 5 meters, which is determined by vehicle speed (1.8
m/s), curvature (0.75 meter), and vehicle size (1.5 meters
long).

A. State Estimation and Classic Approaches

Duckiepond tutorials include navigation using PID con-
troller and pure pursuit algorithms, as well as existing way-
point navigation using MOOS-IvP. Extended Kalman Filter
(EKF) is used to fuse GPS and IMU data to filtering odometry
for localization, estimating the position and orientation of
egomotion. Both vehicles must communicate with each other
through the shoreside station, in order to update the positions
for the track and trail mission.

B. Object Tracking with Single-Shot Multibox Detector (SSD)

Although track and trail can be done by GPS, both vehicles
require to maintain communications with a sufficient updating
rate. The most intuitive way is to using the onboard camera
to follow the lead vehicle. We choose the MobileNet [45]
Single-Shot Multibox Detector for its efficiency. MobileNet-
SSD is modified based on MobileNet referred to VGG-SSD.
To train the model, we collected 3,183 images from a follower
vehicle in the real environment, and manually labeled the
bounding boxes of the lead vehicle in PASCAL-VOC format.
We use Caffe to train our model for 30,000 iterations with
a pre-trained model based on VOC datasets VOC2007 and
VOC2012 [47].

The trained model is then deployed to the follower vehicle,
enabling the detection of the bounding box of the lead vehicle
through the camera inputs. The tracking control system is
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(a) Tracking the lead vehicle from SSD. (b) Imitation learning from human demonstraction.
Fig. 4: The vision-based learning approach for track and trail task. (a) Tracking the lead vehicle using the SSD and perform
control commands based on the detected bounding box. (b) Imitation learning from human demonstration in a end-to-end
fasion to map input images to control commands in simulation.

(a) Experiment environments and the vehicles. (b) Visualization of the vehicle trajectories.
Fig. 5: Experiment setup. (a) Experiment environment is around 60 × 80 meters with a LiDAR watchtower at center for
localization groundtruth. (b) Visualizations of the trajectories from LiDAR watchtower for the lead (green) and the follower
vehicles (red).

divided into two parts: angular and distance control. We
define the angular error as Cx−Wimg/2

Wimg/2
, and the distance error

is defined as K−Hbbx

Himg
, where (Cx, Cy) and Hbbx are the center

point and the height of the detected bounding box, Himg and
Wimg as the height and width of input image, and K as the
desired height of the bounding box to be pursued. The PID
controller on these two systems are then used (see Fig. 4a).

C. Combined Learning and Classic Approaches

It is expected that the classic approach would cause
an unstable tracking trajectory due to the sensor error of
localization or updating rate, but it should complete the task
as long as the GPS positions of the two vehicles are aware
by both vehicle in a timely manner. On the other hand, the
vision-based learning approach would smoothly track the
lead vehicle, but it may fail while incorrect prediction (false
positives) or the lead vehicle is out of the field of view or range

(about 10 meters). Therefore, we combine both approaches
and assign the weights based on the distance between the two
vehicle. While the two vehicles are close to each other, the
weight of learning approach increases. Otherwise the weight
of classic approach increases.

D. Imitation Learning

One desired ability of robot is capable of learning from
demonstration. Such approach does not require labeling
bounding boxes and tracking the lead vehicle in all frames.
It intends to clone the the reflex behavior and imitate human
human policy for an input image, known as the end-to-end
learning. Duckiepond includes educational materials of imita-
tion learning based on the one of the AI Driving Olympics [3],
[5]. In the Gazebo simulation, the “demonstration” can be
done using either manual joystick control or classic approach,
in order to collect the mapping for input images and control
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(a) Circle-shaped. (b) Rectangle-shaped. (c) 8-shaped.
Fig. 6: Routes for track and trail experiments.

commands. By training the model, the follower vehicle can
predict the steering command by input images (see Fig. 4b).
We also attempt to deploy the models trained in simulation to
the real robot, but we found the sim-to-real did not succeed.
We plan to further train the model in a more complex/realistic
simulation environment.

IV. EXPERIMENTS

Track and trail task is selected for evaluations, shown in
Fig. 5a, to demonstrate the capabilities: 1) the lead vehicle
runs waypoint navigation or is tele-operated; 2) the follower
vehicle keeps a certain distance from the lead; 3) both vehicles
should avoid collisions to each other or fixed objects in the
experiment site.

A. Experiment Site and Settings

The experiments took place at Bamboo Lake, an artificial
reservoir in the campus of the National Chiao Tung University
(NCTU), Taiwan. The experiment site is relatively still
compared to river and ocean environments, but with occasional
strong winds. The site is around 60 m× 80 m meters. We
designed 3 routes, including different numbers of waypoints
and angular difference in each route, shown in Fig. 6. (a)
Circle-shaped trail is based on 16 waypoints. This trail is
the easiest task for track and trail because it has less angular
difference and the speed of motors output should be stable. (b)
Rectangle-shaped has 4 waypoints with 90◦ turn, considering
moderate in difficulty. (c) 8-shaped has 8 90◦ turn waypoints
and have both turns right and turn left with shorter straight
route (20m), which is the most difficult route.

B. Methods

The lead vehicle is automatically operated around 1.3m/s
through each waypoint, followed by the follower vehicle using
the proposed methods: 1) a vision-based learning approach via
SSD and an arbitrary controller, 2) classic approach developed
in MOOS-IvP using GPS and IMU fusion, and 3) a combined
method of 1) and 2), in which the control commands (velocity
and angular velocity) were combined. For the safety of track
and trail. We consider the accuracy of our GPS is 3 meters,
and the curvature of rotation of the duckieboat is 1 meter.
The safety distance for Duckieboat to go around another
boat is about 2 times of the length of the Duckieboat (1.5
meters long). And the distance to generate the ideal detection
bounding box by SSD is under 10 meters. Therefore, we set
the track and trail distance to be 5 meters.

C. Evaluation Matrics
We record the positions of two vehicles from 1) the

estimated locations from GPS and IMU fusion in each vehicle,
and 2) a watchtower on an anchored development environment
with a 3D LiDAR Velodyne VLP-16 is set at the center of
experiment (see Fig. 5a). The point clouds from two vehicles
are then clustered to estimate the positions of two vehicles.
LiDAR-based evaluation is more accurate than GPS-based,
although the former might be difficult in other experiment
sites without an anchored floating platform.

The trailing distances between the lead and the follower
vehicles are then measured according to the position and
trajectory data, shown in Fig. 7. The ideal distance between
two vehicles should maintain 5 meters but must not be shorter
than 1.5 meter. We further record the number of collisions
as safety measure, and the number of human interventions as
autonomy measure.

D. Results and Discussions
The overall results are shown in Table IV.
1) Trailing Distance: We demonstrate that vision-based

learning is well-suited for the short distance (5 meters)
track and trail, given the average distance between two
vehicles is the closest to 5 meters compared to the other
two methods. The distance observed using the GPS-based
method is larger due to the sensor error of the low-cost GPS
unit. Combined vision-based learning and classic method
shows a way in between: we set the follower with a higher
weight to use vision-based learning method in short trailing
distance, whereas a higher weight of classic method while
the trailing distance is longer.

2) Safety: The learning approach is in general good to
maintain a certain trailing distance, but misclassification (false
detection of leader vehicle) leads to collisions. Currently the
SSD method does not include the watchtower, and therefore is
not able to perform collision avoidance around unrecognized
objects. In classic method the GPS error and the low GPS
update rate (1 update per second) may result in the follower
vehicle getting too close to the lead one. More importantly,
we observed unreliable network communications that caused
missing GPS data, resulting in 1 collision.

3) Automony: For a more challenging 8-shaped route, we
observed the need for four human interventions of the vision-
based learning method, due to the lead vehicle moving out of
the field of view (FOV) of the follower vehicle. The classic
method from GPS can mostly maintain the autonomous. The
combined method seems to be a good way for auto-recovering
from vision-based learning method when there are lapses due
to a limited FOV.

V. CONCLUSIONS AND FUTURE WORKS

We propose a development environment ”Duckiepond,”
which include Duckieboat, software, and education materials
for a fleet of autonomous maritime vehicles for education and
research. The Duckieboat is designed as open and low-cost, to
be widely adopted. The openly available educational materials
, including Duckieboat specification, hands-on modules, and
tutorials are available for hardware assembly, middleware,
computer vision, state estimation, and machine learning. Our
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Fig. 7: The measurement of three methods trailing distances between two vehicles. Classic approach is a way far to the
following distances (5 meters). SSD approach has the best trailing distance. However, there is a switch from auto to remote
control because the follower vehicle can’t see the lead vehicle shown in red. Combined approach could recover while the
follower couldn’t see the lead vehicle shown in blue.

TABLE IV: Track and trail performance in a navigation task.

Trail Routes Learning Classic Combined
Circle-shaped
No. of Trials 6 6 6
Distance (avg.)(m) GPS 5.268 9.999 9.309
Distance (std.)(m) GPS 0.986 2.972 4.485
Distance (avg.)(m) LiDAR 5.05 - 7.607
Distance (std.)(m) LiDAR 1.235 - 2.998
N of Collision 0 0 0
N of Manual Intervention 0 0 0
Rect-Shaped
No. of trails 6 6 6
Distance (avg.)(m) 6.089 11.216 7.62
Distance (std.)(m) 4.137 3.634 1.171
Collision 0 1 0
Manual 1 2 0
8-Shaped
No. of Trials 6 6 6
Distance (avg.)(m) 5.161 5.87 6.967
Distance (std.)(m) 2.005 1.972 2.554
Collision 1 0 1
Manual 4 0 1

experiments show the baseline performance of track and
trail task using vision-based learning, classic, and combined
methods. There have been 4 universities adopting Duckiepond
as education or research development environment.

The Duckieboats have been tested in artificial lake, reservoir,
and river. We envision that Duckieboat will work together
with hetergeneous vehicle teams, such as underwater vehicles
or a larger vehicle WAM-V equipped more sensors. Future
work will include: 1) track and trail with underwater vehicle
and more multi-vehicle behaviors with machine-learning
approaches; 2) a “super Duckieboat” equipped with more
sensors and advanced waterproof and self-sustained for a
couple of months for river and ocean scenarios for climate
observatory or bio-acoustic detection platform; 3) we plan to
use Duckieboat for a large-scale environment on navigation,
mapping and coordination with multiple vehicles such as
harbor security. Finally, we wish that Duckiepond could be
widely adopted in the communities to facilitate basic scientific
research and investigate complex phenomena in nature and
engineering in fields.

carry out homogeneous multi-vehicle research as well as
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